The Implementation of the Compensation Algorithm of Time Delay for Microwave Polar Transmitters

마이크로파 폴라 송신기의 시간지연 보상 알고리즘 구현

  • Received : 2015.07.03
  • Accepted : 2015.09.14
  • Published : 2015.09.30


In this paper, We made the microwave polar transmitter based on the software to analyze the synchronization status between the phase signal and the amplitude signal of polar transmitter, and analyzed the result. In order to solve the time delay mismatch problem, we applied simplified compensation algorithm and compared the synchronization status between the two paths before and after compensation. Before compensation, the value of time delay mismatch was the maximum of 97 nsec at 9.3 GHz with the occupied bandwidth of 12 MHz, but after applying the compensation algorithm, the signals between the two paths were synchronized, and we identified the occupied bandwidth could recover to the previous 3.7 MHz.


Polar Transmitter;Compensation Algorithm;Time Delay;Mismatch;Synchronization;Phase;Amplitude


Grant : SW 기반 디지털 무선통신용 핵심 모듈 및 트랜시버 개발

Supported by : 산업통상자원부


  1. T. D. Stezler, I. G. Post, J. H. Havens, and M. Koyama, "A 2.7-4.5 V single chip GSM transceiver RF integrated circuit", IEEE Journal of Solid-State Circuits, vol. 30, no. 12, pp. 1421-1429, Dec. 1995.
  2. Kyoohyun Lim, Sunki Min, Sanghoon Lee, Jaewoo Park, Kisub Kang, Hwahyeong Shin, Hyunchul Shim, Sechang Oh, Sungho Kim, Jongryul Lee, Changsik Yoo, and Kukjin Chun, "A $2{\times}2$ MIMO tri-band dual-mode directconversion CMOS transceiver for Wor ldwide WiMAX/ WLAN applications", IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp. 1648-1658, Jul. 2011.
  3. F. H. Raab, P. Asbeck, S. Cripps, P. B. Kenington, Z. B. Popovic, N. Pothecary, J. F. Sevic, and N. O. Sokal, "Power amplifiers and transmitters for RF and microwave", IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 814-826, Mar. 2002.
  4. W. C. Yao, N. K. Chien, "Tuneable delay compensation circuit in polar loop transmitter for WiMAX applications", 2010 APMC, pp. 426-429, Dec. 2010.
  5. Jae Woong Jeong, S. Ozev, S. Sen, and T. M. Mak, "Mea surement of envelope/phase path delay skew and envelop path bandwidth in polar transmitters", IEEE 31st VLSI Test Symposium 2013, pp. 1-6, May 2013.
  6. G. Huebe, R. Staszewski, Precise Delay Alignment between Amplitude and Phase/Frequecy Modulation Paths in a Digital Polar Transmitter, First Edition, Wiley IEEE Press, pp. 85-111, 2011.
  7. 강상기, "폴라송신기의 설계 및 구현", 한국인터넷방 송통신학회논문지, 14(5), pp. 55-59, 2014년 10월.
  8. D. Nestor Lopez, Xufeng Jiang, and D. Maksimovic, Z. Pop vic, "Class-E power amplifier in a polar EDGE transmitter", IEEE MTT-S IMS 2006, pp. 785-788, Jun. 2006.
  9. Xufeng Jiang, N. D. Lopez, and D. Maksimovic, "A switched mode envelop tracker for polar EDGE transmitter", IEEE 37th Power Electronics Specialists Conference 2006, pp. 1-7, Jun. 2006.
  10. J. -F. Bercher, C. Berland, "Adaptive delays alignment in polar transmitter architecture", IEEE Transaction on Circuits and Systems, pp. 1-9, 2009.
  11. Feipeng Wang, "Design of wide-bandwidth enve lopetracking power amplifiers for OFDM applications", IEEE Transaction on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1244-1255, Apr. 2005.
  12. K. T. Vagner, M. I. Doroslovacki, "Proprotionate-type seepest descent and NLMS algorithms", 41st Annual Conference on Informations Sciences and Systems, pp. 47-50, Mar. 2007.
  13. Saleh Osman, Earl W. McCllne, JR, United States Patent Patent No.2 US 8,126,409 B2.