DOI QR코드

DOI QR Code

Anti-diabetic Effects of Barnyard Millet Miryang 3 [Echinochloa esculenta (A. Braun)] Grains on Blood Glucose in C57BL/KsJ-db/db Mice

식용피 밀양3호[Echinochloa esculenta (A. Braun)] 에탄올 추출물의 당뇨모델 마우스에 대 한 항당뇨 활성

  • Received : 2015.11.24
  • Accepted : 2015.11.25
  • Published : 2015.11.30

Abstract

Barnyard millet Miryang 3 [Echinochloa esculenta (A. Braun)] grains have recently been acknowledged for beneficial health properties due to phenolic ingredients and dietary fiber. This study has been conducted on the anti-diabetic activity of barnyard millet Miryang 3 which shows the strongest anti-inflammatory activity among barnyard millet inhabiting in South Korea. When 80% ethanol (EtOH) extract of barnyard millet Miryang 3 grains were orally administered into db/db diabetic mice for 8 weeks (600 mg/kg/day), the glucose level in blood following fasting appeared to be improved compared to the control group. The results of glucose tolerance test and blood lipid profile assay were similar to those of the metformin-administered positive control group. In addition, the level of body weight increase (8.54±2.24) was lower than the level of metformin-administered group (10.36±3.15); however, there was no subtle difference with negative and positive control groups in terms of food efficiency rates. In addition, total cholesterol levels of the 80% EtOH extract-administered group (160.7±7.6) were significantly reduced compared to the diabetic control group (229.3±47.8) and metformin-administered group (176.0±25.6). Consequently, these results show that barnyard millet grains alleviates many of the diabetic symptoms in vivo non-insulin-dependent diabetes mellitus, and suggest that barnyard millet grains can be applicable in developing new functional food materials.

Keywords

Anti-hyperglycemia;anti-diabetes;barnyard millet grains;blood glucose level;ethanol extract

References

  1. Altun, E., Kaya, B., Paydaş, S., Sarıakçalı, B. and Karayaylali, I. 2014. Lactic acidosis induced by metformin in a chronic hemodialysis patient with diabetes mellitus type 2. Hemodial. Int. 18, 529-531. https://doi.org/10.1111/hdi.12109
  2. Chen, X., Zheng, Y. and Shen, Y. 2006. Voglibose (Basen, AO-128), one of the most important alpha-glucosidase inhibitors. Curr. Med. Chem. 13, 109-116. https://doi.org/10.2174/092986706789803035
  3. Cryer, D. R., Mills, D. J., Nicholas, S. P., Stadel, B. V. and Henry, D. H. 2005. Comparative outcomes study of metformin intervention versus conventional approach. Diabetes Care 28, 539-543. https://doi.org/10.2337/diacare.28.3.539
  4. de Munter, J. S., Hu, F. B., Spiegelman, D., Franz, M. and van Dam, R. M. 2007. Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLOS Med. 4, e261. https://doi.org/10.1371/journal.pmed.0040261
  5. Dykes, L. and Rooney, W. L. 2007. Phenolic compounds in cereal grains and their health benefits. Cereal Foods World 52, 105-111.
  6. Egede, L. E. and Ellis, C. 2010. Diabetes and depression: Global perspectives. Diabetes Res. Clin. Pr. 87, 302-312. https://doi.org/10.1016/j.diabres.2010.01.024
  7. Esmaillzadeh, A., Mirmiran, P. and Azizi, F. 2005. Wholegrain intake and the prevalence of hypertriglyceridemic waist phenotype in Tehranian adults. Am. J. Clin. Nutr. 81, 55-63.
  8. Fardet, A. 2010. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutr. Res. Rev. 23, 65-134.
  9. Fineman, M. S., Gaines, E., Bicsak ,T. A., Varns, A., Shen, L. Z., Kim, D., Taylor, K. and Baron, A. D. 2003. Effect on glycemic control of exenatide (Synthetic Exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes. Diabetes Care 26, 2370-2377. https://doi.org/10.2337/diacare.26.8.2370
  10. Han, C. K., Kim, S. S., Choi, S. Y., Park, J. H. and Lee, B. H. 2009. Effects of rice added with mulberry leaves and fruit on blood glucose, body fat and serum lipid levels in rats. J. Kor. Soc. Food Sci. Nutr. 38, 1336-1341. https://doi.org/10.3746/jkfn.2009.38.10.1336
  11. Hanefeld, M. and Temelkova, K. T. 2002. Control of postprandial hyperglycemia-an essential part of good diabetes treatment and prevention of cardiovascular complications. Nutr. Metab. Cardiovasc. Dis. 12, 98-107.
  12. Higashi-Okai, K., Ishida, E., Nakamura, Y., Fujiwara, S. and Okai, Y. 2008. Potent antioxidant and radical-scavenging activities of traditional Japanese cereal grains. J. UOEH 30, 375-389.
  13. Hosoda, A., Okai, Y., Kasahara, E., Inoue, M., Snhimizu, M., Usui, Y., Sekiyama, A. and Higashi-Okai, K. 2012. Potent immunomodulating effects of bran extracts of traditional Japanese millets on nitric oxide and cytokine production of macrophages (RAW264.7) induced by lipopolysaccharide. J. UOEH 34, 285-296. https://doi.org/10.7888/juoeh.34.285
  14. Hundal, R. S., Krssak, M., Dufour, S., Laurent, D., Lebon, V., Chandramouli, V., Inzucchi, S. E., Schumann, W. C., Petersen, K. F., Landau, B. R. and Shulman, G. I. 2000. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49, 2063-2069. https://doi.org/10.2337/diabetes.49.12.2063
  15. Kim, O. K., Oak, C. H., Jeong, J. M., Lee, J. W., Shin, M. H. and Kim, N. H. 2012. A case of metformin-induced lactic acidosis with acute kidney injury misdiagnosed as hepatorenal syndrome in a cirrhosis patient. Kor. J. Med. 82, 241-246. https://doi.org/10.3904/kjm.2012.82.2.241
  16. Large, V. and Beylot, M. 1999. Modifications of citric acid cycle activity and gluconeogenesis in streptozotocin-induced diabetes and effects of metformin. Diabetes 48, 1251-1257. https://doi.org/10.2337/diabetes.48.6.1251
  17. Laube, H. 2002. Acarbose. Clin. Drug Invest. 22, 141-156. https://doi.org/10.2165/00044011-200222030-00001
  18. Musi, N., Hirshman, M. F., Nygren, J., Svanfeldt, M., Bavenholm, P., Rooyackers, O., Zhou, G., Williamson, J. M., Ljunqvist, O., Efendic, S., Moller, D. E., Thorell, A. and Goodyear, L. J. 2002. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51, 2074-2081. https://doi.org/10.2337/diabetes.51.7.2074
  19. Lee, J. Y., Jun, D. Y., Yoon, Y. H., Ko, J. Y., Woo, K. S., Woo, M. H. and Kim, Y. H. 2014. Anti-inflammatory effect of flavonoids kaemferol and biochanin A-enriched extract of barnyard millet (Echinochloa crus-galli var. frumentacea) grains in LPS-stimulated RAW264.7 cells. J. Life Sci. 24, 1157-1167. https://doi.org/10.5352/JLS.2014.24.11.1157
  20. Lee, S. H., Chung, I. M., Cha, Y. S. and Park, Y. 2010. Millet consumption decreased serum concentration of triglyceride and C-reactive protein but not oxidative status in hyperlipidemic rats. Nutr. Res. 30, 290-296. https://doi.org/10.1016/j.nutres.2010.04.007
  21. Lee, Y. R., Woo, K. S., Hwang, I. G., Kim, H. Y., Lee, S. H., Kim, Y. B., Lee, J. and Jeong, H. S. 2012. Anti-diabetic activity of germinated ilpum rough rice extract supplement in mice. J. Kor. Soc. Food Sci. Nutr. 41, 339-344. https://doi.org/10.3746/jkfn.2012.41.3.339
  22. Nishizawa, N., Togawa, T., Park, K. O., Sato, D., Miyakoshi, Y., Inagaki, K., Ohmori, N., Ito, Y. and Nagasawa, T. 2009. Dietary Japanese millet protein ameliorates plasma levels of adiponectin, glucose, and lipids in type 2 diabetic mice. Biosci. Biotechnol. Biochem. 73, 351-360. https://doi.org/10.1271/bbb.80589
  23. Prashant, S., Hegde, T. S. and Chandra, E. S. R. 2005. Spectroscopic study reveals higher free radical quenching potential in kodo millet (Paspalum scrobiculatum) compared to other millets. Food Chem. 92, 177-182. https://doi.org/10.1016/j.foodchem.2004.08.002
  24. Ryazantsev, D. Y., Rogozhin, E. A., Dimitrieva, T. V., Drobyazina, P. E., Khadeeva, N. V., Egorov, T. A., Grishin, E. V. and Zavriev, S. K. 2014. A novel hairpin-like antimicrobial peptide from barnyard grass (Echinochloa crusgalli L.) seeds: Structure functional and molecular-genetics characterization. Biochimie 99, 63e70
  25. Seo, W. D., Kim, J. Y., Jang, K. C., Han, S. I., Ra, J. E., Oh, S. H., Lee, J. H., Kim, Y. G., Kang, H. J., Kim, B. J. and Nam, M. H. 2012. Anti-pigmentation effect of serotonin alkaloid isolted from Korean barnyard millet (Echinochola utilis). J. Kor. Soc. Appl. Biol. Chem. 55, 579-586. https://doi.org/10.1007/s13765-012-2112-7
  26. Ugare, R., Chimmad, B., Naik, R., Bharati, P. and Itagi, S. 2014. Glycemic index and significance of barnyard millet (Echinochloa frumentacae) in type II diabetics. J. Food Sci. Technol. 51, 392-395. https://doi.org/10.1007/s13197-011-0516-8
  27. United Kingdom Prospective Diabetes Study (UKPDS) Group. 1998. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in subjects with type 2 diabetes (UKPDS 33). Lancet 352, 837-853. https://doi.org/10.1016/S0140-6736(98)07019-6
  28. Wellen, K. E. and Hotamisligil, G. S. 2005. Inflammation, stress, and diabetes. J. Clin. Invest. 115, 111-1119.
  29. Wu, L. and Parhofer, K. G. 2014. Diabetic dyslipidemia. Metabolism 63, 1469-1479. https://doi.org/10.1016/j.metabol.2014.08.010
  30. Xie, W. and Du, L. 2011. Diabetes is an inflammatory disease: evidence from traditional Chinese medicines. Diabetes Obes. Metab. 4, 289-301.
  31. Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M. F., Goodyear, L. J. and Moller, D. E. 2001. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167-1174. https://doi.org/10.1172/JCI13505
  32. Zozulinska, D. and Wierusz-Wysocka, B. 2006. Type 2 diabetes mellitus as inflammatory disease. Diabetes Res. Clin. Pr. 74S, S12-16.