DOI QR코드

DOI QR Code

An Approach to Identify Single Nucleotide Polymorphisms in the Period Circadian Clock 3 (PER3) Gene and Proposed Functional Associations with Exercise Training in a Thoroughbred Horse

국내산 경주마의 주기성 시계 유전자(PER3) SNP 및 운동에 따른 기능적 식별 접근 가능성 제안

Do, Kyoung-Tag;Cho, Byung-Wook
도경탁;조병욱

  • Received : 2015.08.06
  • Accepted : 2015.10.16
  • Published : 2015.11.30

Abstract

The period circadian clock gene 3 (PER3) plays a role in the mammalian circadian clocksystem. A regular exercise regime may affect the PER3 transcription in skeletal muscle. Although the effects of day length on circadian and circannual processes are well established in humans and mice, the influence of exercise on these processes in the horse has not been investigated. The present study investigated the expression of the PER3 gene following exercise in a thoroughbred breed of Korean horse. In addition, a comprehensive in silico nonsynonymous single nucleotide polymorphism (nsSNP) analysis of the horse PER3 gene and predicted effects of nsSNPs on proteins were examined. The expression of PER3 in skeletal muscle was significantly upregulated after exercise. Four nsSNPs were functionally annotated and analyzed by computational prediction. The total free energy and RMSD values of PER3 gene showed causative mutations. The results showed that nsSNP s395916798 (G72R) was associated with residues that have stabilizing effects on structure and function of PER3 gene. This study documented role of PER3 gene in phenotypic adaptation related to exercise in skeletal muscle. Further, the SNPs in PER3 could serve as useful biomarkers of early recovery after exercise in racehorses.

Keywords

Gene ontology;NsSNP;period circadian clock genes;thoroughbred horse

References

  1. Cappelli, K., Felicetti, M., Capomaccio, S., Spinsanti, G., Silverstrelli, M. and Supplizi, A. V. 2007. Exercise induced stress in horses: selection of the most stable reference genes for quantitative RT-PCR normalization. BMC Mol. Biol. 9, 49.
  2. Art, T. and Lekeux, P. 2005. Exercise induced physiological adjustments to stressful conditions in sports horses. Livest. Prod. Sci. 92, 101-111. https://doi.org/10.1016/j.livprodsci.2004.11.013
  3. Atkinson, G., Edwards, B., Reilly, T. and Waterhouse, J. 2007. Exercise as a synchroniser of human circadian rhythms: an update and discussion of the methodological problems. Eur. J. Appl. Physiol. 99, 331-341. https://doi.org/10.1007/s00421-006-0361-z
  4. Ebisawa, T., Uchiyama, M., Kajimura, N., Mishima, K., Kamei, Y., Katoh, M., Watanabe, T., Sekimoto, M., Shibui, K., Kim, K., Kudo, Y., Ozeki, Y., Sugishita, M., Toyoshima, R., Inoue, Y., Yamada, N., Nagase, T., Ozaki, N., Ohara, O., Ishida, N., Okawa, M., Takahashi, K. and Yamauchi, T. 2001. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep. 2, 342-346. https://doi.org/10.1093/embo-reports/kve070
  5. Edgar, D. M. and Dement, W. C. 1991. Regularly scheduled voluntary exercise synchronizes the mouse circadian clock. Am. J. Physiol. 261, R928-R933.
  6. Guthrie, A. J. and Lund, R. J. 1998. Thermoregulation. Base mechanisms and hyperthermia. Vet. Clin. North Am. Equine. Pract. 14, 45-59.
  7. Kasper, C. E. 2013. Animal models of exercise and obesity. Annu. Rev. Nurs. Res. 31, 1-17. https://doi.org/10.1891/0739-6686.31.1
  8. Martin, A. M., Elliott, J. A., Duffy, P., Blake, C. M., Attia, S. B. and Katz, L. M., et al. 2010. Circadian regulation of locomotor activity and skeletal muscle gene expression in the horse. J. Appl. Physiol. 109, 1328-1336. https://doi.org/10.1152/japplphysiol.01327.2009
  9. Mautz, W. J. 2003. Exercising animal models in inhalation toxicology: interactions with ozone formaldehyde. Environ. Res. 92, 14-26. https://doi.org/10.1016/S0013-9351(02)00024-5
  10. McGivney, B. A., McGettigan, P. A., Browne, J. A., Evans, A. C., Fonseca, R. G., Loftus, B. J., Lohan, A., MacHugh, D. E., Murphy, B. A., Katz, L. M. and Hill, E. W. 2010. Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training. BMC Genomics 11, 398. https://doi.org/10.1186/1471-2164-11-398
  11. Morris, C., Atkinson, G., Drust, B., Marrin, K. and Gregson, W. 2009. Human core temperature responses during exercise and subsequent recovery: an important interaction between diurnal variation and measurement site. Chronobiol. Int. 26, 560-575. https://doi.org/10.1080/07420520902885981
  12. Nadkarni, N. A., Weale, M., von Schantz, M. and Thomas, M. G. 2005. Evolution of a length polymorphism in the human PER3 gene, a component of the circadian system. J. Biol. Rhythms 20, 490-499. https://doi.org/10.1177/0748730405281332
  13. Piccione, G., Grasso, F., Fazio, F. and Giudice, E. 2008. The effect of physical exercise on the daily rhythm of platelet aggregation and body temperature in horses. Vet. J. 176, 216-220. https://doi.org/10.1016/j.tvjl.2007.01.026
  14. Power, S. K. and Jackson, M. J. 2008. Exercise induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol. Rev. 88, 1243-1276. https://doi.org/10.1152/physrev.00031.2007
  15. Reppert, S. M. and Weaver, D. R. 2002. Coordination of circadian timing in mammals. Nature 418, 935-941. https://doi.org/10.1038/nature00965
  16. Sodhi, S. S., Ghosh, M., Song, K. D., Sharma, N., Kim, J. H., Kim, N., Lee, S. J., Kang, C. W., Oh, S. J. and Jeong, D. K. 2014. A comparative approach to prioritize SNPs in Acetyl-CoA- acetyletransferase-2 (ACAT-2) and its profiling for the metabolic process in pig. PLoS ONE 9, e102432. https://doi.org/10.1371/journal.pone.0102432
  17. Toti, L., Bartalucci, A., Ferrucci, M., Fulceri, F., Lazzeri, G., Lenzi, P., Soldani, P., Gobbi, P., La Torre, A. and Gesi, M. 2013. High intensity exercise training induces morphological and biochemical changes in skeletal muscles. Biol. Sport. 30, 301-309. https://doi.org/10.5604/20831862.1077557
  18. Zhengtang, Q., Zhai, X. and Ding, S. 2013. How to explain exercise-induced phenotype from molecular data: rethink and reconstruction based on AMPK and mTOR signaling. Springerplus 2, 693. https://doi.org/10.1186/2193-1801-2-693