DOI QR코드

DOI QR Code

Reliability of 3D-Inertia Measurement Unit Based Shoes in Gait Analysis

관성센서 기반 신발형 보행 분석기의 신뢰성 연구

  • Joo, Ji-Yong (Department of Physical Education, Graduate School, Chonnam National University) ;
  • Kim, Young-Kwan (Department of Physical Education, College of Education, Chonnam National University) ;
  • Park, Jae-Young (Department of Exercise Prescription, College of Health and Welfare, Dongshin University)
  • 주지용 (전남대학교 대학원 체육학과) ;
  • 김영관 (전남대학교 사범대학 체육교육과) ;
  • 박재영 (동신대학교 보건복지대학 운동처방학과)
  • Received : 2015.01.31
  • Accepted : 2015.03.20
  • Published : 2015.03.31

Abstract

Purpose : The purpose of this study was to investigate the reliability of 3D-inertia measurement unit (IMU) based shoes in gait analysis. This was done with respect to the results of the optical motion capturing system and to collect reference gait data of healthy subjects with this device. Methods : The Smart Balance$^{(R)}$ system of 3D-IMU based shoes and Osprey$^{(R)}$ motion capturing cameras were used to collect motion data simultaneously. Forty four healthy subjects consisting of individuals in 20s (N=20), 40s (N=13), and 60s (N=11) participated in this study voluntarily. They performed natural walking on a treadmill for one minute at 4 different target speeds (3, 4, 5, 6 km/h), respectively. Results : Cadence (ICC=.998), step length (ICC=.970), stance phase (ICC=.845), and double-support phase (ICC=.684) from 3D-IMU based shoes were in agreement with results of optical motion system. Gait data of healthy subjects according to different treadmill speeds and ages were matched to previous literature showing increased cadence and reduced step length for elderly subjects. Conclusion : Conclusively, 3D-IMU based shoes in gait analysis were a satisfactory alternative option in measuring linear gait parameters.

References

  1. Arif, M., Ohtaki, Y., Nagatomi, R., & Inooka, H. (2004). Estimation of the effect of cadence on gait stability in young and elderly people using approximate entrophy technique, Measurement Science Review, 4(2), 29-40.
  2. Barak, Y., Wagenaar, R. C., & Holt, K. G. (2006). Gait characteristics of elderly people with a history of fall: A dynamic approach. Physical Theraphy, 86(11), 1501-1510. https://doi.org/10.2522/ptj.20050387
  3. Brandes, M., Zijlstra, W., Heikens, S., van Lummel, R., & Rosenbaum, D. (2006). Accelerometry based assessment of gait parameters in children, Gait & Posture, 24(4), 482-486. https://doi.org/10.1016/j.gaitpost.2005.12.006
  4. Chen, C. P., Chen, M. J., Pei, Y. C., Lew, H. L., Wong, P. Y., & Tang, S. F. (2003). Sagittal plane loading response during gait in different age groups and in people with knee osteoarthritis. American Journal of Physical Medicine & Rehabilitation, 82(4), 307-312. https://doi.org/10.1097/01.PHM.0000056987.33630.56
  5. Choi, J. S., Kang, D. W., Mun, K. R., Bang, Y. H., & Tack, G. R. (2009). Gait detection algorithm using accelerometer, Korean Journal of Sport Biomechanics, 19(1), 159-166. https://doi.org/10.5103/KJSB.2009.19.1.159
  6. Cicchetti, D. V. (1994). Guideline, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology, Psychological Assessment, 6(4), 284-290. https://doi.org/10.1037/1040-3590.6.4.284
  7. Eun, S.-D., & Lee, K.-K. (2004). The effect of the speed condtions on the gait pattern in treadmill walking of elderly persons. The Korean Journal of Physical Education, 43(5), 397-404.
  8. Greene, B. R., McGrath, D., O'Neill, R., O'Donovan, K. J., Burns, A., & Gaulfield, B. (2010). An adaptive gyroscopre-based algorithm for temporal gait analysis. Medical & Biological Engineering & Computing, 48, 1251-1260. https://doi.org/10.1007/s11517-010-0692-0
  9. Hamacher, D., Hamacher, D., Taylor, W. R., Singh, N. B., & Schega, L. (2014). Towards clinical applications: Repetitative sensor position re-calibration for improved reliability of gait parameters. Gait & Posture, 39, 1146-1148. https://doi.org/10.1016/j.gaitpost.2014.01.020
  10. Lee, K.-D., Kim, D.-W., Yoo, J.-H., Kim, K.-H., Lee, T.-Y., Park, K.-S., Chung, G.-S., & Park, S.-B. (2011). Comparative analysis on gait patterns of the elderly and the young regarding to foot pressure. Korean Journal of Sport Biomechanics, 20(1), 67-75. https://doi.org/10.5103/KJSB.2010.20.1.067
  11. Liu, T., Inoue, Y., & Shibata, K. (2009). Development of wearable sensor system for quantitative gait analysis. Measurement, 42, 978-988. https://doi.org/10.1016/j.measurement.2009.02.002
  12. Lutzner, C., Voigt, H., Roeder, I., Kirschner, S., & Lutzner, J. (2014). Placement makes a difference: Accuracy of an accelerometer in measuring step number and stair climbing. Gait & Posture, 39, 1126-1132. https://doi.org/10.1016/j.gaitpost.2014.01.022
  13. Mariani, B., Hoskovec, C., Rochat, S., Bula, C., Penders, J., & Aminian, K. (2010). 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. Journal of Biomechanics, 43(15), 2999-3006. https://doi.org/10.1016/j.jbiomech.2010.07.003
  14. Moe-Nilssen, R., & Helbostad, J. L. (2004). Estimation of gait cycle characteristics by trunk accelorometry. Journal of Biomechanics, 37, 121-126. https://doi.org/10.1016/S0021-9290(03)00233-1
  15. Sabatini, A. M., Martelloni, C. M., Scapellato, S., & Cavallo, F. (2005). Assessment of walking features from foot inertial sensing. IEEE Transactions on Biomedical Engineering, 52(3), 486-494. https://doi.org/10.1109/TBME.2004.840727
  16. Schwesig, R., Leuchte, S., Fisher, D., Ullmann, R., & Kluttig, A. (2011). Inertial sensor based reference gait data for healthy subjects. Gait & Posture, 33, 673-678. https://doi.org/10.1016/j.gaitpost.2011.02.023
  17. Takeda, R., Tadano, S., Natorigawa, A., Todoh, M., & Yoshinari, S. (2009). Gait posture estimation using wearable acceleration and gyro sensors. Journal of Biomechancs, 42, 2486-2494. https://doi.org/10.1016/j.jbiomech.2009.07.016
  18. Tas, S. M., Guneri, S., Baki, A., Yildirim, T., Kaymak, B., & Erden, Z. (2014). Effects of severity of osteoarthritis on the temporospatial gait parameters in patients with knee osteoarthritis. Acta Orthopaedica et Traumatologica Turcica, 48(6), 635-641. https://doi.org/10.3944/AOTT.2014.13.0071
  19. Tirosh, O., & Sparrow, W. A. T. (2003). Identifying heel contact and toe-off using forceplate thresholds with a range of digital-filter cutoff frequencies. Journal of Applied Biomechanics, 19, 178-194.
  20. Ugbolue, U. C., Papi, E., Kaliarntas, K. T., Kerr, A., Earl, L., Pomeroy, V. M., Rowe, P. J. (2013). The evaluation of an inexpensive, 2D, video based gait assessment system for clinical use. Gait & Posture, 38(3), 483-489. https://doi.org/10.1016/j.gaitpost.2013.01.018
  21. Winter, D. A., Patla, A. E., Frank, J. S., & Walt, S. E. (1990). Biomechanical walking pattern changes in the fit and healthy elderly. Physical Therapy, 70(6), 340-347.
  22. Yi, J.-H., & Chang, J.-K. (2014). The comparative analysis of gait safety between elderly female and adult female. Korean Journal of Sport Biomechanics, 24(3), 249-258. https://doi.org/10.5103/KJSB.2014.24.3.249
  23. Yoon, J., Park, H.-S., & Damiano, D. L. (2012). A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation. Journal of NeuroEngineering and Rehabiliation, 9, 62-74. https://doi.org/10.1186/1743-0003-9-62
  24. Zeni, J. A., Richards, J. G., & Higginson, J. S. (2008). Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait & Posture, 27, 710-714. https://doi.org/10.1016/j.gaitpost.2007.07.007
  25. Zhou, H., & Hu, H. (2007). Inertial sensors for motion detection of human upper limbs. Sensor Review, 27(2), 151-158. https://doi.org/10.1108/02602280710731713
  26. Zijlstra, W., & Hof, A. L. (2003). Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait & Posture, 18, 1-10. https://doi.org/10.1016/S0966-6362(03)00104-8

Cited by

  1. Effects of walking speed and age on the directional stride regularity and gait variability in treadmill walking vol.30, pp.6, 2016, https://doi.org/10.1007/s12206-016-0549-z
  2. Validity of shoe-type inertial measurement units for Parkinson’s disease patients during treadmill walking vol.15, pp.1, 2018, https://doi.org/10.1186/s12984-018-0384-9