Characterization Study of Detector Module with Crystal Array for Small Animal PET: Monte Carlo Simulation

소동물 전용 양전자방출단층시스템의 섬광체 배열에 따른 특성 평가: 몬테칼로 시뮬레이션 연구

  • 백철하 (동서대학교 방사선학과)
  • Received : 2014.12.11
  • Accepted : 2015.03.04
  • Published : 2015.04.28


The aim of this study is to perform simulations to design the detector module with crystal array by Monte Carlo simulation. For this purpose, a small animal PET scanner, employing module with 1~8 crystal array discrimination scheme, was designed. The proposed scanner has an inner diameter of 100 mm with detector modules in crystal array. Each module is composed of a 5.0 mm LSO crystal with a $2.0{\times}2.0mm^2$ sensitive area with a pitch 2.1 mm and 10.0 mm thickness. The LSO crystals are attached to the SiPM which has a dimension of $2.0{\times}2.0mm^2$. The detector module with crystal array of the designed PET detector was simulated using the Monte Carlo code GATE(Geant4 Application for Tomographic Emission). The detector is enough compensation for the loss of data in sinogram due to gaps between modules. The results showed that the high sensitivity and effectively reduced the problem about the missing data were greatly improved by using the detector module with 1 crystal array.


Small Animal PET System;Monte Carlo Simulation;GATE Code


  1. Y. H. Chung, T. Y. Song, and C Choi, "Nuclear Medicine imaging instrumentations for molecular imaging," Kor. J. Nucl. Med. Vol.38, No.2, pp.131-139, 2004.
  2. Y. C. Tai and R. Laforest, "Instrumentation aspects of animal PET," Annu Rev Biomed Eng, Vol.7, pp.255-285, 2005
  3. A. Vandenbroucke, A. Foudray, P. Olcott, and C. S. Levin, "Performance characterization of a new high resolution PET scintillation detector," Phys. Med & Biol, Vol.55, No.19, pp.5895-5911, 2010.
  4. S. Ha, S. Matej, M. Ispiryan, and K. Mueller, "GPU Accelerated Forward and Back-Projections With Spatially Varying Kernels for 3D DIRECT TOF PET Reconstruction," IEEE Trans Nucl Sci, Vol.60, No.1, pp.166-173, 2013.
  5. A. Kishimoto, J. Kataoka, T. Kato, T. Miura, T. Nakamori, K. Kamada, K. Sato, Y. Ishikawa, K. Yamamura, N. Kawabata, and S. Yamamoto, "Development of a Dual-Sided Readout DOI-PET Module Using Large-Area Monolithic MPPC-Arrays," IEEE Trans Nucl Sci, Vol.60, No.1, pp.38-43, 2013.
  6. L. A. Shepp and Y. Vardi, "Maximum likelihood reconstruction for emission tomography," IEEE Trans. Med. Imaging, Vol.1, No.2, pp.113-122, 1982.
  7. H. M. Hudson and R. S. Rarkin, "Accelerated Image Reconstruction using Ordered Subsets of Projection Data," IEEE Trans Med Img, Vol.13, No.4, pp.394-398, 1994
  8. G.A. Kastis, A. Gaitanis, Y. Fernandez, G. Kontaxakis, and A. Fokas., Evaluation of a spline reconstruction technique: Comparison with FBP, MLEM and OSEM, 2010 IEEE NSSMIC, pp.3282-3287, 2010
  9. D. S. Kim, H. J. Yoo, D. O. Shim, and H. J. Yu, "The Evaluation of Reconstructed Images in 3D OSEM Accoring to Iteration and Subset Number," J Nucl Med Technol, Vol.15, No.1, pp.17-24, 2011
  10. H. Baghaei, H. Li, J. Uribe, Y. Wang, and W. H. Wong, "Compensation of missing projection data for MDAPET camera," IEEE Nucl. Sci. Symp. and Med. Imag. Conf., 2000.
  11. R. Buchert, K. H. Bohuslavizki, J. Meste, T. Sera, and C. Blechmann, "Quality Assurance in PET: Evaluation of the Clinical Relevance of Detector Defects," J. Nucl. Med., Vol.40, No.10, pp.1657-1665, 1999.
  12. R. Redus, J. S. Gordon, and P. Bennett, "An imaging nuclear survey system," IEEE Trans. Nucl. Sci., Vol.43, No.3, pp.1827-1831, 1996.
  13. H. W. A. M. de Jong, R. Boellaard, C. Knoess, M. Lenox, C. Michel, M. Casey, and A. A. Lammertsma, "Correction methods for missing data in sinograms of the HRRT PET scanner," IEEE Trans. Med. Imag., Vol.50, No.5, pp.1452-1456, Oct. 2003.
  14. J. S. Karp, G. Muehllehner, and R. M. Lewitt, "Constrained Fourier space method for compensation of missing data in emission computed tomography," IEEE Trans. Med. Imag., Vol.7, No.1, pp.21-25, 1988.
  15. A. Del Guerra, N. Belcari, M. Giuseppina Bisogni, G. LLosa, S. Marcatili, G. Ambrosi, F. Corsi, C. Marzocca, G. Galla, and C. Piemonte, Advantages and pitfalls of the silicon photomultiplier (SiPM) as photodetector for the next generation of PET scanners, Nucl. Instrum. Methods Phys Res A, Vol.617, No.1/3, pp.223-226, 2010.
  16. J. Y. Yeom, R. Vinke, and C. S. Levin, "Optimizing timing performance of silicon photomultiplier-based scintillation detectors," Phys Med Biol, Vol.58, No.4, pp.1207-1220, 2013.
  17. J. H. Jung, Y. Choi, K. J. Hong, J. Kang, W. Hu, K. H. Lim, Y. Huh, S. Kim, J. Jung, and B. Kim, "Development of brain PET using GAPD arrays," Med Phys, Vol.39, No.3, pp.1227-1233, 2012.
  18. S. Jan, G. Santin, D. Strul, S. staelens, K. Assie, D. Autret, S. Avner, R. Barbier, M. Bardies, P. M. Bloomfield, D. Brasse, B. Breton, P. Bruyndonckx, I. Bubat, A. F. Chatziioannou, Y. Choi, Y. H Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P. F. Honore, S. Kerhoas-Cavata, A. S. Kirov, M. Koole, and M. Krieguer, "GATE: a simulation toolkit for PET and SPECT," Phys. Med. Biol., Vol.49, pp.4543-4561, 2004.
  19. S. Staelens1, D. Strul, G. Santin, S. Vandenberghe, M. Koole, Y. Asseler, I. Lemahieu, and R. Van de Walle., "Monte Carlo simulations of a scintillation camera using GATE: validation and application modeling," phys. Med. Biol., Vol.34, pp.1026-1036, 2007.
  20. C. H. Baek, S. J. Lee, and Y. H. Chung, "Coded Aperture Gamma Camera for Thyroid Imaging: Monte Carlo Simulation," Kor. J. Med. Phy., Vol.19, No.4, pp.247-255, 2008.
  21. M. E. Phelps, "PET: Molecular Imaging and Its Biological applications," Springer-Verlag New York, Inc., pp.38-48, 2004.