Transactions of the Korean Society of Mechanical Engineers A (대한기계학회논문집A)
- Volume 39 Issue 5
- /
- Pages.499-505
- /
- 2015
- /
- 1226-4873(pISSN)
- /
- 2288-5226(eISSN)
DOI QR Code
On the Energy Conversion Efficiency of Piezoelectric Vibration Energy Harvesting Devices
압전 진동 에너지 수확 장치의 에너지 변환 효율에 대한 고찰
- Kim, Jae Eun (School of Mechanical and Automotive Engineering, Catholic Univ. of Daegu)
- 김재은 (대구가톨릭대학교 기계자동차공학부)
- Received : 2015.01.23
- Accepted : 2015.02.27
- Published : 2015.05.01
Abstract
To properly design and assess a piezoelectric vibration energy harvester, it is necessary to consider the application of an efficiency measure of energy conversion. The energy conversion efficiency is defined in this work as the ratio of the electrical output power to the mechanical input power for a piezoelectric vibration energy harvester with an impedance-matched load resistor. While previous research works employed the electrical output power for approximate impedance-matched load resistance, this work derives an efficiency measure considering optimally matched resistance. The modified efficiency measure is validated by comparing it with finite element analysis results for piezoelectric vibration energy harvesters with three different values of the electro-mechanical coupling coefficient. New findings on the characteristics of energy conversion and conversion efficiency are also provided for the two different impedance matching methods.
Keywords
Vibration;Energy Harvesting;Piezoelectricity;Conversion Efficiency;Impedance Matching;Electro-Mechanical Coupling Coefficient
File
Acknowledgement
Supported by : 대구가톨릭대학교
References
- Roundy, S., Wright, P. K. and Rabaey, J., 2003, "A Study of Low Level Vibrations as a Power Sources for Wireless Sensor Nodes," Computer Communications, Vol. 26, No. 11, pp. 1131-1144. https://doi.org/10.1016/S0140-3664(02)00248-7
- Cook-Chennault, K. A., Thambj, N. and Sastry, A. M., 2008, "Powering MEMS Portable Devices-A Review of Non-regenerative and Regenerative Power Supply Systems with Special Emphasis on Piezoelectric Energy Harvesting Systems," Smart Materials and Structures, Vol. 17, No. 4, 043001. https://doi.org/10.1088/0964-1726/17/4/043001
- Meninger, S., Mur-Miranda, J. O., Amirtharajah, R., Chandrakasan, A. P. and Lang, J. H., 2001, "Vibrationto-Electric Energy Conversion," IEEE Transactions on VLSI Systems, Vol. 9, No. 1, pp. 64-76. https://doi.org/10.1109/92.920820
- El-hami, M., Glynne-Jones, P., Whilte, N. M., Hill, M., Beeby, S., James, E., Brown, A. D. and Ross, J. N., 2001, "Design and Fabrication of a New Vibration- Based Electromechanical Power Generator," Sensors and Actuators A, Vol. 92, No. 1-3, pp. 335-342. https://doi.org/10.1016/S0924-4247(01)00569-6
- Roundy, S. and Wright, P. K., 2004, "A Piezoelectric Vibration Based Generator for Wireless Electronics," Smart Materials and Structures, Vol. 13, No. 5, pp. 1131-1142. https://doi.org/10.1088/0964-1726/13/5/018
- Mitcheson, P. D., Green, T. C., Yeatsman, E. M. and Holmes, A. S., 2004, "Architectures for Vibration- Driven Micropower Generators," Journal of Microelectromechanical Systems, Vol. 13, No. 3, pp. 429-440. https://doi.org/10.1109/JMEMS.2004.830151
- Stephen, N. G., 2006, "On Energy Harvesting from Ambient Vibration," Journal of Sound and Vibration, Vol. 293, No. 1-2, pp. 409-425. https://doi.org/10.1016/j.jsv.2005.10.003
- Kim, J. E. and Kim, Y. Y., 2011, "Analysis of Piezoelectric Energy Harvesters of a Moderate Aspect Ratio with a Distributed Tip Mass," ASME Journal of Vibration and Acoustics, Vol. 133, No. 4, 041010. https://doi.org/10.1115/1.4003598
- Roundy, S., 2005, "On the Effectiveness of Vibrationbased Energy Harvesting," Journal of Intelligent Material Systems and Structures, Vol. 16, No. 10, pp. 809-823. https://doi.org/10.1177/1045389X05054042
- Gilbert, J. M. and Balouchi, F., 2008, "Comparison of Energy Harvesting Systems for Wireless Sensor Networks," International Journal of Automation and Computing, Vol. 5, No. 4, pp. 334-347. https://doi.org/10.1007/s11633-008-0334-2
- Kim, J. E., 2010, "Design of a Vibration-Powered Piezoelectric Energy-Harvesting Module by Considering Variations in Excitation Frequency," Trans. Korean Soc. Mech. Eng. A, Vol. 34, No. 5, pp. 637-644. https://doi.org/10.3795/KSME-A.2010.34.5.637
- Erturk, A. and Inman, D. J., 2011, Piezoelectric Energy Harvesting, Wiley, United Kingdom.
- Kim, J. E., 2013, "Performance Study of Diagonally Segmented Piezoelectric Vibration Energy Harvester," Trans. Korean Soc. Mech. Eng. A, Vol. 37, No. 8, pp. 983-989. https://doi.org/10.3795/KSME-A.2013.37.8.983
- Umeda, M., Nakamura, K. and Ueha, S., 1997, "Energy Storage Characteristics of a Piezo-Generator using Impact Induced Vibration," Japanese Journal of Applied Physics, Vol. 36, No. 5B, pp. 3146-3151. https://doi.org/10.1143/JJAP.36.3146
- Goldfarb, M. and Jones, L. D., 1999, "On the Efficiency of Electric Power Generation with Piezoelectric Ceramic," ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 121, No. 3, pp. 566-571. https://doi.org/10.1115/1.2802517
- Richards, C. D., Anderson M. J., Bahr, D. F. and Richards, R. F., 2004, "Efficiency of Energy Conversion for Devices Containing a Piezoelectric Component," Journal of Micromechanics and Microengineering, Vol. 14, No. 5, pp. 717-721. https://doi.org/10.1088/0960-1317/14/5/009
- Sodano, H., Inman, D. J. and Park, G., 2005, "Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries," Journal of Intelligent Material Systems and Structures, Vol. 16, No. 10, pp. 799-807. https://doi.org/10.1177/1045389X05056681
- Shu, Y. C. and Lien, I. C., 2006, "Efficiency of Energy Conversion for a Piezoelectric Power Harvesting System," Journal of Micromechanics and Microengineering, Vol. 16, No. 11, pp. 2429-2438. https://doi.org/10.1088/0960-1317/16/11/026
- Harne, R. L., 2012, "Theoretical Investigation of Energy Harvesting Efficiency from Structural Vibrations Using Piezoelectric and Electromagnetic Oscillators," The Journal of the Acoustical Society of America, Vol. 132, No. 1, pp. 162-172. https://doi.org/10.1121/1.4725765
- Erturk, A. and Inman, D. J., 2008, "Issues in Mathematical Modeling of Piezoelectric Energy Harvesters," Smart Materials and Structures, Vol. 17, No. 6, 065016. https://doi.org/10.1088/0964-1726/17/6/065016
- Kim, J. E., 2010, "Analysis of Vibration-powered Piezoelectric Energy Harvesters by Using Equivalent Circuit Models," Trans. Korean Soc. Noise Vib. Eng., Vol. 20, No. 4, pp. 397-404. https://doi.org/10.5050/KSNVE.2010.20.4.397
- Piezo Systems, Inc., Catalog available from http://www.piezo.com/catalog7C.pdf (cited on 23 January, 2015).
- Kim, J. E., Kim, Y.-C. and Sun, K. H., 2014, "Performance Characteristics of Vibration Energy Harvesting Using [001] and [011]-Poled PMN-PZT Single Crystals," Trans. Korean Soc. Noise Vib. Eng., Vol. 24, No. 11, pp. 890-897. https://doi.org/10.5050/KSNVE.2014.24.11.890
- Ceracomp Co., Ltd. (http://www.ceracomp.com).
- Stanton, S. C., Erturk, A., Mann, B. P., Dowell, E. H. and Inman, D. J., 2011, "Nonlinear Nonconservative Behavior and Modeling of Piezoelectric Energy Harvesters Including Proof Mass Effects," Journal of Intelligent Material Systems and Structures, Vol. 23, No. 2, pp. 183-199.
- Kim, J. E. and Kim, Y. Y., 2013, "Power Enhancing by Reversing Mode Sequence in Tuned Mass-Spring Unit Attached Vibration Energy Harvester," AIP Advances, Vol. 3, No. 7, 072103. https://doi.org/10.1063/1.4813314
Cited by
- Electrically Induced Damping Characteristics and a Relevant Requirement for the Maximum Power Generation in Piezoelectric Vibration Energy Harvesters vol.25, pp.6, 2015, https://doi.org/10.5050/KSNVE.2015.25.6.406
- New efficiency measures of energy conversion and their characterization for piezoelectric vibration energy harvesters vol.28, pp.20, 2017, https://doi.org/10.1177/1045389X17704070