DOI QR코드

DOI QR Code

Design and Manufacture of CPW-fed Two Arc-shaped Antenna for WLAN Applications

WLAN 시스템을 위한 두 개 원호 형태 안테나의 설계와 제작

Yoon, Joong-Han
윤중한

  • Received : 2014.12.22
  • Accepted : 2015.01.30
  • Published : 2015.04.30

Abstract

In this paper, a dual-band arc-shaped monopole antenna for WLAN(Wireless Local Area Networks) applications. The proposed antenna is based on CPW-fed structure, and composed of two-arc shaped of radiating patch and ground plane. To obtain the optimized parameters, we used the simulator, Ansoft's High Frequency Structure Simulator (HFSS) and found the parameters that greatly effect antenna characteristics. Using optimal parameters, the antenna is fabricated. The numerical and experiment results demonstrated that the propnosed antenna satisfied the -10 dB impedance bandwidth requirement while simultaneously covering the WLAN bands. And measured results of gain and radiation patterns characteristics displayed determined for opeating bands.

Keywords

dual-band antenna;WLAN application;arc-shaped radiator;CPW-fed

References

  1. Warren L. Stutzman G. A. Thiele, Antenna Theory and Design, 3rd ed., Wiley, 2012.
  2. Girish Kumar and K. P. Ray, Broadband Microstrip Antennas, Artech House, 2003.
  3. J. B. Yoo, J. H. Jun, C. K. Ahn, W. C. Kim, and W. G. Yang, "Design and implementation of CPW-Fed UWB Monopole Antenna," Journal of Electromagnetic Engineering And Science, vol. 21, no. 2, pp. 218-223, Feb. 2010.
  4. H. J. Lee, "Wide band monopole antenna by modified ground of coplanar waveguide," The Transactions of the Korean Institute of Electrical Engineers, vol. 60, no. 2, pp. 53-55, Jun. 2011. https://doi.org/10.5370/KIEEP.2011.60.2.053
  5. H. J. Lee and Y. M. Lim, "A Broadband monopole antenna with ring loop by modified ground plane," The Transactions of the Korean Institute of Electrical Engineers, vol. 61, no. 3, pp. 149-152, Mar. 2012. https://doi.org/10.5370/KIEEP.2012.61.3.149
  6. T. H. Yoo and T. H. Kim, "A CPW-Fed ultra-wideband planar monopole antenna for UHF band applications," The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 23, no. 7, pp. 761-767, Jul. 2012. https://doi.org/10.5515/KJKIEES.2012.23.7.761
  7. M. K. Yang, G. P. Gao, S. F. Niu, and J. S. Zhang, "Study of a compact ring Monopole UWB antenna with band- notched characteristic," Microwave and Optical Technology Letters, vol. 54, no. 10, pp. 2387-2392, Oct. 2012. https://doi.org/10.1002/mop.27067
  8. T. I. Choi, B. K. Bum, and S. W. Lim, "Modified monopole antenna for multi resonance wideband," The Journal of the Korea Institute of Electronic Communication Sciences, vol. 3, no. 2, pp. 53-57, Jun. 2008.
  9. S. W. Lee, N. Kim, and S. Y. Lee, "Design and fabrication of the antenna for Wibro and WLAN Communications Using CPWG structure," Journal of Electromagnetic Engineering And Science, vol. 19, no. 10, pp. 1086-1095, Oct. 2008.
  10. D. W. Han, G. T. Jung, C. H. Lee, H. C. Lee, and K. S. Kwak, "Design of an internal antenna for hepta-band Using CPW-fed," The Journal of Korea Information and Communications Society, vol. 33, no. 9, pp. 934-940, Sept. 2008.
  11. L. Zhang, Y- C. Jiao, G. Zhao, Y. Song, and F. S. Zhang, "Broadband dual band CPW-fed closed rectangualr ring monopole antenna with vertical strip for WLAN operations," Microwave Optical Technology Letters, vol. 50, no. 7, pp. 1929-1931, Jul. 2008. https://doi.org/10.1002/mop.23514
  12. C. K. Ham, J. W. Baik, and Y. S, Kim, "CPW-fed compact meander and L-shaped monopole antenna for dual band WLAN applications," Microwave Opt Technology Letters, vol. 50, no. 12, pp. 3147-3149, Dec. 2008. https://doi.org/10.1002/mop.23914
  13. T. L. Zhang, Z. H. Yan, Y. Song, and L. Chen, "Compact CPW-fed planar monopole antenna for dual band WLAN applications," Microwave Opt Technology Letters, vol. 51, no. 5, pp. 1377-1379, May, 2009. https://doi.org/10.1002/mop.24339
  14. Y. S. Seo, J. W. Jung, H. J. Lee, and Y. S. Lim, "Design of circualr monopole antenna with symmetrically folded stub for WLAN operation," Microwave Optical Technology Letters, vol. 54, no. 7, pp. 1549-1552, Jul. 2012. https://doi.org/10.1002/mop.26845
  15. J. H. Yoon, Y. C. Rhee, and Y. K. Jang, "A study on the rectangular ring open-ended monopole antenna with a vertical strip for WLAN dual band operations," Microwave Opt Technol Letters, vol. 55, no. 3 pp. 619-624, Mar. 2013.
  16. Y. S. Koo and D. S. Im, "Design and manufacture of modified ring antenna with stub and ground slot for WLAN applications", Journal of Information and Communication Convergence Engineering, vol. 17, no. 10, pp. 2285-2272, Oct. 2013.
  17. C. H. Bark, M. D. Kim, and H. K. Sung, "Design of compact microstrip patch antenna for WLAN of IEEE 802.11a," Journal of Korea Information Science, vol. 19, no.12, pp. 611-617, Dec. 2013.
  18. Q. Y. Zhang and Q. X. Chu, "Triple band dual rectangular ring printed monopole antenna for WLAN/WiMAX applications," Microwave and Optical Technology Letters, vol. 51 no 21, pp. 2845-2848, Dec. 2009. https://doi.org/10.1002/mop.24773
  19. K. He, R. X. Wang, Y. F. Wang, and B.H. Sun, "Compact tri-band claw shaped monopole antenna for WLAN/ WiMAX applications," Journal of Electromagnetic and Waves Applications, vol. 25 no. 5-6, pp. 869-877, 2011. https://doi.org/10.1163/156939311794827104
  20. J. Pei, A. Wang, and W. Leng, "A novel arc shaped printed antenna for WLAN applications," Applied Mechanics and Materials, vol. 130-134, pp. 4006-4010, 2012.
  21. J. H. Lu and C.H. Yeh, "Planar broadband arc-shaped monopole antenna for UWB system," IEEE Transactions on Antennas and Propagation, vol. 60, no. 7, pp. 3091-3095, 2012. https://doi.org/10.1109/TAP.2012.2196954
  22. M. Chongcheawchamnan, K. Meelarpkit, S. Julrat, C. Phongchareonpanich, and M. Krairiksh, "Extending bandwidth of a CPW-fed monopole antenna using circular arc structure," Microwave and Optical Technology Letters, vol. no. 54, no. 6, pp. 1412-1415, Jun. 2012. https://doi.org/10.1002/mop.26815
  23. C. Wang, Z.H. Yan, and S. Li, "Compact ultra wideband CPW-fed fan shaped antenna with dual band notched using arc shaped slots," Microwave and Optical Technology Letters, vol. 55, no. 2, pp. 368-371, Feb. 2013. https://doi.org/10.1002/mop.27328
  24. H. Q. Zhai, Z. H. Ma, Y. Han, and C. H. Liang, "A compact printed antenna for triple band WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 65-68, 2013. https://doi.org/10.1109/LAWP.2013.2238881
  25. Ansoft High Frequency Structure Simulator (HFSS) Version 10.0, Ansoft Corporation, 2005.