A Comparative Study on Microalgae Recovery Rates in Response to Different Low Cost Bio-flocculant Applications

저비용 응집제를 이용한 미세조류 응집 효율 비교

Choi, Hee-Jeong

  • Received : 2015.08.12
  • Accepted : 2015.10.01
  • Published : 2015.11.30


In this study, low cost bio-flocculants, chitosan, cationic starch and Mg-sericite, were used as a flocculant to harvest freshwater microalgae, Chlorella vulgaris. Chitosan, cationic starch and Mg-sericite separated successfully >98% of C. vulgaris at following optimal parameters: 90 mg/L chitosan at pH 6-7, 70 mg/L cationic starch at pH 9-10 and 50 mg/L Mg-sericite at pH 4-5. A relatively high correlation coefficient (R2) of 0.9993 for chitosan, 0.9971 for catonic starch and 0.9924 for Mg-sericite was obtained. The investigated flocculants amount increased linearly with increasing the microalgae amount. The biopolymer, Mg-sericite, was more effective than that of other investigated flocculants. These results indicated that a bio-flocculants, chitosan, cationic starch and Mg-sericite, could prove to be an effective flocculant for economical production of microalgae biomass. In addition, Mg-sericite was more effective comparing to the other investigated flocculants.


Cationic starch;Chitosan;Flocculation;Harvesting;Microalgae;Mg-sericite


  1. Ahmad, A. L., Mat Yasin, N. H., Derek, C. J. C., and Lim, J. K. (2011). Optimization of Microalgae Coagulation Process using Chitosan, Chemical Engineering Journal, 173, pp. 879­-882.
  2. American Public Health Association (APHA). (2012). Standard Methods for the Examination of Water and Waste Water, 22th ed., American Public Health Association Publication, Washington, D.C.
  3. Barros, A. I., Gonçalves, A. L., Simões, M., and Pires, J. C. M. (2015). Harvesting Techniques Applied to Microalgae: A Re­view, Renewable and Sustainable Energy Reviews, 41, pp. 1489-­1500.
  4. Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., and Chang, J. S. (2011). Cultivation, Photobioreactor Design and Harvesting of Microalgal for Biodiesel Production: A critical Review, Bioresource Technology, 102, pp. 71-81.
  5. Chisti, Y. (2007). Biodiesel from Microalgae, Biotechnology Advances, 25(3), pp. 294-306.
  6. Choi, H. J. (2014). Comparison of Biomass and Oil Content of Chlorella sp., Nannochloris sp., and Botryococcus braunii in the Mixotrophic Conditions using Glycerol, Journal of Korean Society on Water Environment, 30(5), pp. 469-476. [Korean Literature]
  7. Choi, H. J. (2015). Optimization for Microalgae Harvesting using Mg-Sericite Flocculant, Journal of Korean Society on Water Environment, 31(3), pp. 328-333. [Korean Literature]
  8. Danquah, M. K., Ang, L., Uduman, N., Moheimani, N., and Forde, G. M. (2009). Dewatering of Microalgae Culture for Biodiesel Production: Exploring Polymer Flocculation and Tangential Flow Filtration, Journal of Chemical Technology and Biotechnology, 84, pp. 1078-1083.
  9. Dassey, A. J. and Theegala, C. S. (2013). Harvesting Economics and Strategies using Centrifugation for Cost Effective Sepa­ration of Microalgae Cells for Biodiesel Application, Biore­sources Technology, 128, pp. 214-215.
  10. Farooq, W., Lee, Y. C., Han, J. I., Darpito, C. H., Choi, M., and Yang, J. W. (2013). Efficient Microalgae Harvesting by Organo-building Blocks of Nanoclays, Green Chemistry, 15, pp. 749-755.
  11. Gerde, J. A., Yao, L., Wen, Z., and Wang, T. (2014). Microalgae Flocculation: Impact of Flocculant Type, Algae Species and Cell Concentration, Algal Research, 3, pp. 30-35.
  12. Gouveia, L. and Oliveira, A. C. (2009). Microalgae as a Raw Material for Biofuels Production, Journal of Industrial Microbiology and Biotechnolgy, 36, pp. 269-274.
  13. Habib, M. A. B. and Parvin, M. (2008). A Review on Culture, Production and Use of Spirulina as Food for Humans and Feeds for Domestic Animals and Fish, In: Huntington, T. C. and Hasan, M. R., editors, FAO fisheries and aquaculture circular No. 1034, Rome: Food and Agriculture Organization of the United Nations.
  14. Hansel, P. A., Riefler, R. G., and Stuart, B. (2014). Efficient Flocculant of Microalgae for Biodiesel Production using Cationic Starch, Algal Research, 5, pp. 133-139.
  15. Huang, G. H., Chen, F., Wei, D., Zhang, X. W., and Chen, G. (2010). Biodiesel Production by Microalgal Biotechnology, Applied Energy, 87, pp. 38-46.
  16. Intional Energy Agency (IEA). (2014). World Energy Outlook 2014, IEA, London.
  17. Lee, W. J., Han, B. K., Park, I. H., Park, S. H., Oh, H. I., and Jo, D. H. (1995). Effects of Reaction Temperature, Time and Particle Size on the Physicochemical Properties of Chitosans, Korean Journal of Food Science and Technology, 27(6), pp. 997-1002. [Korean Literature]
  18. Lee, A., Lewis, D., and Ashman, P. (2009). Microbial Floccu­lation, a Potentially Low-cost Harvesting Technique for Marine Microalgae for Production of Biodiesel, Journal of Applied Phycology, 21, pp. 559-567.
  19. Lee, Y. C., Kim, B., Farooq, W., Chung, J., Han, J. I., Shin, H. J., Jeong, S. H., Park, J. Y., Lee, J. S., and Oh, Y. K. (2013) Harvesting of oleaginous Chlorella sp. by organoclays, Bio­resource Technology, 132, pp. 440-445.
  20. Liu, D., Wang, P., Wei, G., Dong, W., and Hui, F. (2013). Removal of Algal Blooms from Freshwater by the Coagu­lation- Magnetic Separation Method, Environmental Science and Pollution Research International, 20, pp. 60-65.
  21. Letelier-Gordo, C. O., Holdt, S. L., Francisci, D. D., Karakashev, D. B., and Angelidaki, I. (2014). Effective Harvesting of the Microalgae Chlorella protothecoides via Bioflocculation with Cationic Starch, Bioresource Technology, 167, pp. 214-218.
  22. Papazi, A., Makridis, P., and Divanach, P. (2010). Chlorella minutissima using cell coagulants, Journal of Applied Phycology, 22, pp. 349-355.
  23. Rashid, N., Rehman, S. U., and Han, J. I. (2013). Rapid Harves­ting of Freshwater Microalgae using Chitosan, Process Biochemistry, 48, pp. 1107-1110.
  24. Reddy, D. H. K., Lee, S. M., and Kim, J. O. (2013) A Review on Emerging Applications of Natural sericite and Its Compo­sites, World Applied Science Journal, 27(11), pp. 1514-1523.
  25. Salim, S., Bosma, R., Vermue, M. H., and Wijffels, R. H. (2011). Harvesting of Microalgae by Bioflocculation, Journal of Applied Phycology, 23, pp. 849-855.
  26. Semerjian, L. and Ayoub, G. M. (2003). High-pH-Magnesium Coagulation-Flocculation in Wastewater Treatment, Advances in Environmental Research, 7(2), pp. 389-403.
  27. Show, K. Y. and Lee, D. J. (2014). Algal Biomass Harvesting, In: pandey A., Lee, D. J., Chisti, Y., and Soccol, C. R., editors, Biofuels from Algae, Burlington, Elsevier, pp. 85-110.
  28. Şirin, S., Trobajo, R., Ibanez, C., and Salvado, J..irin, S., Trobajo, R., Ibanez, C., and Salvadó, J. (2012). Har­vesting the Microalgae Phaeodactylum tricornutum with Polyaluminum Chloride, Aluminium sulphate, Chitosan and Alkalinity-induced Flocculation, Journal of Applied Phyco­logy, 24, pp. 1067-1080.
  29. Vandamme, D., Foubert, I., and Muylaert, K. (2013). Flocculation as a Low-cost Method for Harvesting Microalgae for Bulk Biomass Production, Trends Biotechnology, 31, pp. 233-239.
  30. Vandamme, D., Foubert, I., Fraeye, I., Meesschaert, B., and Muylaert, K. (2012). Flocculation of Chlorella vulgaris induces by High pH: Role of Magnesium and Calcium and Pracial Implications, Bioresources Technology, 105, pp. 114-119.

Cited by

  1. Application of Saccharified Acorn-starch for Biomass and Lipid Accumulation of Microalgae vol.32, pp.2, 2016,
  2. Application of methyl-esterified sericite for harvesting microalgae species vol.4, pp.3, 2016,