DOI QR코드

DOI QR Code

On the Stability of a Mixed Type Functional Equation

Lee, Yang-Hi;Jung, Soon-Mo

  • Received : 2013.08.10
  • Accepted : 2013.09.30
  • Published : 2015.03.23

Abstract

In this paper, we investigate the stability of the functional equation f(-x + y + z + w) + f(x - y + z + w) + f(x + y - z + w) + f(x + y + z - w) = 3f(x) + f(-x) + 3f(y) + f(-y) + 3f(z) + f(-z) + 3f(w) + f(-w) by using the direct method in the sense of Hyers.

Keywords

generalized Hyers-Ulam stability;Hyers-Ulam stability;direct method;mixed type functional equation

References

  1. K. Cieplinski, Applications of fixed point theorems to the Hyers-Ulam stability of functional equations - a survey, Ann. Funct. Anal., 3(1)(2012), 151-164. https://doi.org/10.15352/afa/1399900032
  2. S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scienti fic, Singapore (2002).
  3. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64-66.
  4. J. A. Baker, The stability of certain functional equations, Proc. Amer. Math. Soc., 112(3)(1991), 729-732. https://doi.org/10.1090/S0002-9939-1991-1052568-7
  5. L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure and Appl. Math., 4(1)(2003), Art. 4, http://jipam.vu.edu.au
  6. L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara Ser. Mat.-Inform., 41(2003), 25-48.
  7. L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., 346(2004), 43-52.
  8. P. Enflo and M. S. Moslehian, An interview with Th. M. Rassias, Banach J. Math. Anal., 1(2)(2007), 252-260. https://doi.org/10.15352/bjma/1240336224
  9. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27(1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  10. D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations of Several Variables, Birkhauser, Basel (1998).
  11. S.-M. Jung, On the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 204(1996), 221-226. https://doi.org/10.1006/jmaa.1996.0433
  12. S.-M. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc., 126(1998), 3137-3143. https://doi.org/10.1090/S0002-9939-98-04680-2
  13. S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222(1998), 126-137. https://doi.org/10.1006/jmaa.1998.5916
  14. S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and Its Applications Vol. 48, Springer, New York (2011).
  15. M. Mirzavaziri and M. S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc. (N. S.), 37(3)(2006), 361-376. https://doi.org/10.1007/s00574-006-0016-z
  16. M. S. Moslehian and Th. M. Rassias, Stability of functional equations in non-Archimedean spaces, Appl. Anal. Discrete Math., 1(2)(2007), 325-334. https://doi.org/10.2298/AADM0702325M
  17. V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4(2003), 91-96.
  18. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  19. S. M. Ulam, Problems in Modern Mathematics, Wiley, New York (1964).

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)