Hyers-Ulam Stability of Pompeiu's Point

Huang, Jinghao;Li, Yongjin

  • Received : 2013.10.04
  • Accepted : 2013.11.01
  • Published : 2015.03.23


In this paper, we investigate the stability of Pompeiu's points in the sense of Hyers-Ulam.


Hyers-Ulam stability;Pompeiu's point;Mean value theorem


  1. M. Das, T. Riedel, P. K. Sahoo, Hyers-Ulam stability of Flett's points, Appl. Math. Lett., 16(3)(2003), 269-271.
  2. T. M. Flett, A mean value theorem, Math. Gaztte, 42(1958), 38-39.
  3. P. Gavruta, S.-M. Jung, Y. Li, Hyers-Ulam stability of mean value points, Ann. Funct. Anal., 1(2)(2010), 68-74.
  4. D. H. Hyers, S. M. Ulam, On the stability of differential expressions, Math. Mag., 28(1954), 59-64.
  5. S.-M. Jung, Hyers-Ulam stability of zeros of polynomials, Appl. Math. Lett., 24(2011), 1322-1325.
  6. W. Lee, S. Xu, F. Ye, Hyers-Ulam stability of Sahoo-Riedel's point, Appl. Math. Lett., 22(2009) 1649-1652.
  7. Y. Li, L. Hua, Hyers-Ulam stability of a polynomial equation, Banach J. Math. Anal., 3(2)(2009), 86-90.
  8. P. K. Sahoo, T. Riedel, Mean Value Theorems and Functional Equations, World Scientific, River Edge, NJ, 1998.
  9. S. M. Ulam, A Collection of the Mathematical Problems, Interscience, New York, 1960.


Supported by : National Natural Science Foundation of China