Effects of Group Task-Oriented Circuit Training on Motor Function, ADLs and Quality of Life in Individuals with Chronic Stroke: A Case Study

Myung-Sook Ko¹, Hye-Seon Jeon¹, Sujin Hwang*³

¹The Graduate School, Dept. of Physical Therapy, Yonsei University
²Dept. of Physical Therapy, College of Health Science, Yonsei University
³Dept. of Physical Therapy, Division of Health Science, Baekseok University

Abstract The purpose of this study was to examine the effects of group task-oriented circuit training (TOCT) based on motor learning applied in conjunction with physical and occupational therapy on functional activity, activities of daily living (ADLs), and quality of life in individuals with chronic stroke. Six chronic stroke patients participated for a duration of 31 weeks. Treatment outcomes were assessed via Chedoke-McMaster Stroke Assessment, the Berg Balance Scale, the Assessment of Motor and Process Skill (AMPS), and the Stroke Impact Scale pre- and post-intervention. The participants exhibited significant improvements in impairment, static and dynamic balance, and mood and emotion after group TOCT. The results of AMPS indicated an improvement in the motor area in 3 of the subjects. In the process area, 4 of the subjects exhibited improvement. The results of this study suggest that TOCT is beneficial to physical functions for chronic hemiparetic stroke patients in community-dwelling.

Key Words: AMPS, Chronic Stroke, Motor Function, SIS, Task-oriented Circuit Training.

1. Introduction

Over 80% of stroke survivors lose gait function, with typical gait velocity reduced from approximately 1.33 m/s to approximately 0.38 - 0.8 m/s[1]. This slow gait is inadequate for safe passage across a crosswalk, even after discharge from the hospital. In addition,
reduced ability to perform physical functions may persist for six months to three years following stroke[2]. Fortunately, in the absence of a new incident, stroke patients tend to maintain the functional recovery achieved during rehabilitation over the long-term, although beyond 3-5 years, there is a slight decrease in performance due to the effects of increasing age and comorbidities[3].

After a stroke, severe disabilities develop affecting most activities of daily living (ADLs), including eating, dressing, and personal care, which largely depend on upper extremity function[4]. Functional disabilities are not limited to motor control and ADLs, but also influence patient mood and quality of life. Therefore, stroke survivors often participate in a rehabilitation program for the rest of their lives[5]. However, an initially slow recovery resulting in decreased motivation, the burden of medical costs, and urgent discharge from the hospital are obstacles to continued rehabilitation[6].

Various neuro–rehabilitation approaches, such as neurodevelopment treatment (NDT), proprioceptive neuromuscular facilitation (PNF), Brunnstrom’s method, and Rood’s method, have been widely applied in stroke patients. However, there is a lack of evidence for the therapeutic effectiveness of these treatments, and their efficacy in improving functional activity is particularly unclear[7,8].

Task-oriented circuit training (TOCT) has been developed from learning theory. This approach emphasizes goal-oriented tasks with precise feedback patterns for acquisition and retention of a new skill[9]. TOCT involves workstations that reproduce physical activities that the subject usually performs during daily living such as walking, climbing stairs, and maintaining balance with the aim of promoting motor learning and task retention. Previous studies have shown that TOCT is a good method for improving locomotive function and mobility in survivors following stroke.

Targeting chronic stroke patients, many group exercise programs have been introduced in the community based on motor learning. Leroux reported that chronic stroke patients exhibited significantly improved balance, movement control, and gait after an 8-week group exercise program[10]. Pang et al. also reported on TOCT that focused on the upper extremities the program was composed of hand activities and functional training including range of motion movements, weight-bearing activities, and elbow and wrist exercises to improve upper extremity function in persons with chronic stroke[11].

Previous Korean studies reported that TOCT in stroke patients improved balance (measured via the Berg Balance Scale [BBS]) and ADLs (measured via the Modified Barthel Index [MBI]) when compared to a control group[12] furthermore, improvement in quality of life after community gait training was reported[13].

There have not been many previous reports of combination ADL training and gait training in group TOCT. In particular, there has not been a study that examined ADLs after training through an objective assessment measure. Therefore, the purpose of this study was to examine changes in motor function, ADL, and quality of life in chronic stroke patients after physical and occupational therapy through a group TOCT program.

2. Methods

2.1 Participants

Six hemiplegic participants who had experienced stroke (9 males, 3 females) were included in this study. Information regarding the purpose and method of this study was provided and consent was obtained. The inclusion criteria for the participants were as follows: (1) were in chronic stage of stroke recovery (i.e., poststroke duration of ≥1y); (2) no other musculoskeletal disorders or neuromuscular diseases except stroke; (3) no problems with clear communication or cognition (score >18 on the Korean Mini–mental State Examination); (4) no participation in any rehabilitation program except the one developed for this study. Exclusion criteria were
Table 1) General characteristics of subjects (N=6)

<table>
<thead>
<tr>
<th>S.</th>
<th>Age (years)</th>
<th>Sex</th>
<th>Time since stroke (years)</th>
<th>Affected side</th>
<th>Walking aid</th>
<th>MMSE-K</th>
<th>Type of stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>54</td>
<td>M</td>
<td>8.3</td>
<td>Rt.</td>
<td>None</td>
<td>29</td>
<td>CI</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
<td>M</td>
<td>5.1</td>
<td>Lt.</td>
<td>Cane</td>
<td>36</td>
<td>CH</td>
</tr>
<tr>
<td>3</td>
<td>66</td>
<td>M</td>
<td>3.1</td>
<td>Rt.</td>
<td>Cane</td>
<td>30</td>
<td>CH</td>
</tr>
<tr>
<td>4</td>
<td>57</td>
<td>M</td>
<td>4.1</td>
<td>Rt.</td>
<td>None</td>
<td>21</td>
<td>CI</td>
</tr>
<tr>
<td>5</td>
<td>67</td>
<td>M</td>
<td>14.0</td>
<td>Lt.</td>
<td>Cane</td>
<td>23</td>
<td>CH</td>
</tr>
<tr>
<td>6</td>
<td>31</td>
<td>F</td>
<td>6.0</td>
<td>Lt.</td>
<td>None</td>
<td>30</td>
<td>CI</td>
</tr>
</tbody>
</table>

S: subject, CI: Cerebral Infarction, CH: Cerebral Hemorrhage, MMSE-K: the Korean Mini-Mental State Examination

(1) previous participation in a group TOCT exercise class prior to the beginning of the study; (2) any medical conditions that would severely limit participation in the exercise program or that could interfere with outcome assessments performed in the study[8]. The study period was 31 weeks and the general characteristics of the participants were presented in Table 1.

2.2 Outcome measures

Participants were evaluated on two occasions: (1) before initiating the exercise program and (2) at the end of the 31-week period. The tests employed to measure motor performance pre- and post-intervention have all shown a high level of validity and reliability.

2.2.1 Chedoke-McMaster Stroke Assessment (CMSA)

The CMSA includes 21 items divided into two inventories: impairment and disability. This tool is composed of 6 items that address shoulder pain, postural control, arm, hand, leg, and foot. A score ranging from 1 to 7 is assigned to each item with the total possible score ranging from 6 to 42. The disability inventory includes 2 dimensions: a gross motor function score ranging from 10 to 70 and a walking score ranging from 4 to 30 total scores range from 14 to 100. The inter-rater reliability has been established with an intraclass coefficients (ICC) of 0.98 (95% confidence interval) [14].

2.2.2 The Berg Balance Scale (BBS)

The BBS includes 14 items that measure static and dynamic balance and consists of various balancing tasks while sitting and standing. The BBS includes tasks such as getting up from a chair, moving from a chair to a bed, and standing on one leg. Each item is graded from 0-4 points with a maximum score of 56 points. Intra-rater reliability and inter-rater reliability are r=0.94-0.98, r=0.93-0.95, respectively, thus indicating high reliability and high internal validity[12].

2.2.3 The Assessment of Motor and Process Skill (AMPS)

The AMPS is an observational assessment used to evaluate people in the context of familiar and relevant tasks in basic and instrumental daily activities. The tool is a standardized assessment that can be used in those aged three years or older with any diagnosis or disability. The AMPS measures the performance of 23 ADLs based on a variety of tasks used in the assessment.

There are 13 major groups, such as meal preparation, table setting, and laundry, among others. During the task, 16 motor and 20 process skills are scored on a 4-point scale from 1 (an unacceptable amount of effort or inefficiency, imminent safety risk, or need for assistance was noted) to 4 (no problems observed with this skill in this task). The validity and reliability of this tool have been previously documented[16].
2.2.4 The Stroke Impact Scale (SIS)

The SIS 2.0 contains 64 items among eight domains: strength, hand function, mobility, ADL/IADL, memory, communication, emotion, and participation, in addition to a patient-reported percentage of recovery. Scores from 0 (extreme impact) to 100 (no impact) are separately recorded for each domain and the percentage of recovery. The reliability of the SIS is good, with Cronbach’s alpha coefficients of 0.83 to 0.96, and ICC between 0.70 and 0.95[17].

2.3 Intervention

Each exercise session included brief (5–10 min) warm-up and cool-down periods in which the participants performed extremity stretches and active or self-assisted range of motion exercises. The 12 workstations incorporated into the circuit were: (1) physical therapy (6 workstations) and (2) occupational therapy (6 workstations). For further details on the training protocol, see the appendix. Among 12 workstations, training at 4 workstations included demonstration by a therapist.

The purpose of this study was improvement of gait and ADLs using a group circuit exercise program led by physical and occupational therapists. A total of 6 research team members comprising physical therapists, occupational therapists and physical therapy student assistants were assigned to 2 groups of 6 stroke patients, led by 2 therapists. The students that participated were well educated in TOCT, functional ability of the subjects, and the applied therapy methods prior to the study. The exercise program was conducted for 31 weeks, once a week, for 100 minutes.

During exercises, participants received extensive feedback from the class instructor on how to perform movements correctly and on appropriate posture. The level of difficulty of the exercises was modified by progressively increasing the number of repetitions and/or increasing the complexity of the exercises performed at each station[18].

2.4 Data Analysis

In this study, Wilcoxon’s signed rank test was used to verify changes in the factors assessed (CMSA, BBS, SIS) pre and post–intervention and SPSS version 12.0 (SPSS Inc., Chicago, IL, USA) was used for analysis with a significance level of 0.05. A multi-faceted Rasch computer program (FACETS) was used to derive AMPS IADL motor and process ability measures[19].

3. Results

3.1 Exercise Program Participation

The participants showed a very high participation rate of 97% in the 31-week exercise program. Participants with a participation rate below 95% were excluded from this study.

3.2 Motor Performance Measures

Impairment CMSA scores were significantly improved after TOCT, while there was no difference in disability scores. After TOCT, there was a significant improvement in the BBS scores of the subjects [Table 2].

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Comparison of pre- and post-intervention COMS and BBS scores</th>
<th>(N=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>Pre - TOCT</td>
<td>Post- TOCT</td>
</tr>
<tr>
<td>CMSA (Impairment)</td>
<td>21.66±4.27</td>
<td>25.00±5.62</td>
</tr>
<tr>
<td>CMSA (Disability)</td>
<td>76.50±19.94</td>
<td>77.66±20.04</td>
</tr>
<tr>
<td>BBS</td>
<td>34.66±16.42</td>
<td>39.16±17.75</td>
</tr>
</tbody>
</table>

*Mean±SD, *p<0.05, TOCT : task-oriented circuit training
Table 3: Comparison of pre- and post-intervention AMPS scores (N=6)

<table>
<thead>
<tr>
<th>Pt</th>
<th>Motor</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-TOCT</td>
<td>Post-TOCT</td>
</tr>
<tr>
<td>1</td>
<td>0.37</td>
<td>0.72</td>
</tr>
<tr>
<td>2</td>
<td>-0.99</td>
<td>-1.38</td>
</tr>
<tr>
<td>3</td>
<td>-0.10</td>
<td>0.41</td>
</tr>
<tr>
<td>4</td>
<td>0.04</td>
<td>0.62</td>
</tr>
<tr>
<td>5</td>
<td>0.12</td>
<td>-0.62</td>
</tr>
<tr>
<td>6</td>
<td>1.16</td>
<td>0.70</td>
</tr>
</tbody>
</table>

*Clinically meaningful change: logit=0.3~0.4, † Statistically significant change: logit >0.5
Assessment of Motor and Process Skill: AMPS

Table 4: Comparison of pre- and post-intervention Stroke Impact Scale scores (N=6)

<table>
<thead>
<tr>
<th>Items</th>
<th>Pre - TOCT</th>
<th>Post - TOCT</th>
<th>Z</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength</td>
<td>7.83±1.16F</td>
<td>8.83±1.72</td>
<td>-1.732</td>
<td>0.083</td>
</tr>
<tr>
<td>Memory & Thinking</td>
<td>26.16±6.79</td>
<td>27.6±6.5</td>
<td>-1.633</td>
<td>0.102</td>
</tr>
<tr>
<td>Mood & Emotion</td>
<td>31.6±6.68</td>
<td>34.8±6.33</td>
<td>-2.032</td>
<td>0.042*</td>
</tr>
<tr>
<td>Communication</td>
<td>27.3±6.12</td>
<td>27.0±8.08</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>ADL</td>
<td>32.3±4.03</td>
<td>34.0±6.47</td>
<td>-1.473</td>
<td>0.141</td>
</tr>
<tr>
<td>Mobility</td>
<td>31.5±10.94</td>
<td>31.8±10.55</td>
<td>-0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>Hand Function</td>
<td>6.00±2.00</td>
<td>6.00±2.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Social Participation</td>
<td>21.83±5.11</td>
<td>21.83±5.07</td>
<td>0.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

*mean±SD, †p<0.05, TOCT : task-oriented circuit training.

3.3 Assessment of Motor and Process Skills

There was a statistically significant increase greater than 0.5 logits in more than two subjects in the motor skill areas of AMPS in ADLs after TOCT. Another subject showed an increase greater than 0.3 logits. There were no notable changes in the other three subjects. In the process skills areas of AMPS in ADLs, two subjects showed a statistically significant increase greater than 0.5 logits, while there was a greater than 0.3 logit increase in the other two subjects, and no changes in the remaining two subjects [Table 3].

3.4 Stroke Impact Scale

There were significant increases in the SIS areas of mood and emotion after TOCT, but no changes were observed in strength, memory and thinking, communication, ADLs, mobility, or participation in society [Table 4].

4. Discussion

This study sought to evaluate changes in motor function, ADLs, and quality of life in stroke patients after TOCT in conjunction with physical and occupational therapy with the goal of improving motor performance and ADL performance. When hemiparetic patients complete their rehabilitation, the functional gains attributable to their therapy are often reduced or lost because of a reduced level of physical activity[1]. The participants exhibited significant improvement in impairment, static and dynamic balance, and mood and emotion after group TOCT intervention. However, there were no significant improvements in disability, strength, memory and thinking, communication, ADLs, mobility, hand function or social participation after group TOCT intervention in this study.

Improvement in motor performance and ADLs in chronic stroke patients is a relatively new area of study.
Effects of Group Task-Oriented Circuit Training on Motor Function, ADLs and Quality of Life in Individuals with Chronic Stroke: A Case Study

within the field of rehabilitation. Our TOCT program comprised high-intensity, task-specific training that included several principles of experience-dependent neuroplasticity, such as specificity, repetition, and intensity. The eight different functional workstations used in this trial were goal-oriented, challenging, feasible, meaningful and relevant to patients’ needs (i.e., not too easy, yet not too difficult). The participants completed each task with progressive intensity.

There are four categories for assessing the capacity for stroke recovery: "impairment" describes the symptoms of pathological conditions; "disability" represents limitations in functional activities; "handicap" indicates limitations in a functional role; and "quality of life" refers to a patient’s physical, psychological, and social wellness[20]. In this study, the CMSA and BBS were used to assess motor function, the AMPS was used to assess impairments in ADLs, and the SIS was used to assess changes in impairment, disability, and quality of life. In response to TOCT, participants exhibited statistically significant improvement in motor function (as assessed by the CMSA), but significant changes did not occur in disability (as assessed by the SIS).

In this study, improvements in shoulder pain, postural control, and arm and leg ROM were observed via CMSA. This agrees with the study by Murie-Fernández (2012), where upper extremity physical therapy improved shoulder pain and ROM in stroke patients[21]. On the other hand, the lack of significant improvement in the disability area may be due to the long history of illness, ranging from 3 to 14 years, in chronic patients. Thirty-one weeks of therapy may have posed difficulties in significantly improving disability[3].

There was also a statistically significant improvement in balance (as assessed by the BBS), which has previously been reported to be closely correlated with independent gait[22]. These results are similar to the improvement in motor function reported after group therapy in a study by Leroux (2005)[10]. Also, improvements in the BBS 10 m gait score and SIS mobility score were shown in another programs utilizing a similar weight-bearing treadmill[23]. According to several other investigators, body weight–supported treadmill training post–stroke increases functional independence and gait speed[23,24]. There appears to be a strong neurophysiological basis to this type of retraining. In addition to improvements in upper extremity function, French et al. showed that repetitive task-oriented training resulted in modest improvements in lower limb function[25].

In this study, general improvements in motor and process areas of the AMPS were observed. These results also agree with previous studies that have found that task-oriented activities can be generalized into ADL abilities [12]. According to a review by Steultjens et al. (2003), sensorimotor training is not effective for improving ADLs, extended ADLs, social participation, or arm/hand function[26]. Nottingham extended the ADL scale, which improved in the control group than the circuit training group at 12 weeks[27]. These results agree with those of the current study.

Patients exhibited statistically significant improvements in moods and emotions, as measured by SIS assessment. The group exercise program gave patients a sense of belonging, fulfillment and problem solving that encouraged active participation in the exercises, motivated them, and instilled in them a sense of purpose, thereby encouraging further application of the program. White et al. (2014) reported that magnitude of pain and depression is negatively correlated with social status[28]. In general, group exercise improves social adaptability and decreases psychological sense of loss. Encouragement from other participants provides psychological stability, thus further encouraging its effectiveness as a therapeutic method[13]. Functional disability, depression, and lack of self-support are major factors that decrease quality of life in stroke patients. In Korea, several studies have indicated that depression, ADLs, functional status, social status, and motivation are factors that influence patient quality of life. A group circuit exercise program can be less costly and more effective for motor function improvement, and can provide more psychological satisfaction.
compared to individual therapies. Thus, group therapy
can be a viable alternative for maintaining continued
rehabilitation in chronic stroke patients.

This study enrolled chronic stroke patients in physical and
occupational therapy to examine the effects on ADLs
and quality of life. It is difficult to provide a
comprehensive service that compiles information and
opinions from various health care professionals because
different professionals assess and treat patients
independently. This study had the advantage of
compiling recommendations from both physical and
occupational therapists during assessment and with
regard to program strategy development to create a
more comprehensive intervention plan. According to
the most recent clinical practice guidelines published by
the American Heart Association, a multidisciplinary
approach to stroke patient rehabilitation coordinated
and carried out in an organized manner is recommended[29].

This pilot study had some limitations. First, our
small and heterogeneous sample prevented us from
drawing definite inferences from this analysis. A
further study involving more patients is recommended.
With the increasing elderly population and the growing
cost of individual therapies, more studies on group
therapies should be conducted that emphasize everyday
physical functions and quality of life in stroke patients.

Appendix :
The Protocol of Task–oriented Circuit
Training

1. Patients per group: 6
2. No. of therapists: 2 (an experienced physiotherapist
and an occupational therapist)
3. Intensity (I): 31 weeks, 1 day per week, 100 minutes
4. Progression (P): increasing the number of
 repetitions completed in 40 minutes at a
 workstation and increasing treadmill speed
5. Warm-up Exercise: Extension exercises using a
 ball, steps and the wall, upper extremity stretches
 and active or self-assisted range of motion
 exercises (5–10 minutes)
6. Main Exercise - Physical Therapy: The following
 physical therapy exercises were conducted for
 40 minutes
 (2 workstations x 20 minutes each). (Fig. 1):
 (1) Balance (maintenance of balance with the paretic
 leg on a step and the non–paretic leg suspended
 off the step and vice versa)
 (2) Walking (forward, sideways, backwards, up and
down stairs, outdoor, crossing a crosswalk, tandem
 stance and tandem walking)
 (3) Partial weight support treadmill (partial weight
 support treadmill training, walking up to 30
 minutes at a speed between 0.9 and 2.9 km/h,
 with a speed increase in 0.5–1.3 km/h each
 session. The speed was self selected by the subject)
 (4) Strength training (elastic bands, balls, anti-gravity
 posture exercise, passive resistance exercise)
 (5) Computer game (lower extremity symmetrical
 weight bearing using Nintendo Wii Sports Games)
 (6) Functional task exercise (soccer, table tennis,
dance)
7. Main Exercise - Occupational Therapy: The
 following occupational therapy exercises were
 conducted for 40 minutes (2 workstations x 20
 minutes):
 (1) Functional ADL training: using the telephone,
 cooking, drinking from a cup, brushing hair, brushing
 teeth, vacuuming, dressing and undressing, writing a
 letter.
 (2) Upper range of motion (sling, ball, shoulder joint
 external rotation, functional electrical stimulation
 of the wrist extensor) passive or self-assisted
 range of motion for joints with no or minimal
 active movement using a sling or ball
 (3) Sensory stimulation (guessing the object by
 proprioception and tactile sensation only, various
 sensory balls, grain vibrator on the palmar and
 extensor muscles of the hand, and various tactile stimuli
 (4) Muscle strengthening (elastic band, putty, anti-gravity
 posture exercise, passive resistance exercise,
Effects of Group Task-Oriented Circuit Training on Motor Function, ADLs and Quality of Life in Individuals with Chronic Stroke: A Case Study

functional electrical stimulation to wrist extensors (only for those with less than 30° active wrist extension)

(5) Constraint-induced movement therapy (task completion using only the affected side with a splint applied to the less affected arm). Tasks such as preparing tea, putting on makeup, putting beans into a cup, Wii games, eating fruits, and ball rolling were done using only the affected side.

(6) Functional task training (Go-Stop card game, Korean traditional board game, general board game, writing a letter, gardening, typing on a computer, memory game) (Fig. 2)

8. Cool-down Period: Cool down in a seated position for 10 minutes, devoted to flexibility and range of motion exercises[8]

References

DOI: http://dx.doi.org/10.1016/j.apmr.2004.12.036

DOI: http://dx.doi.org/10.1161/01.STR.18.5.830

DOI: http://dx.doi.org/10.1097/00002060-199805000-00003

DOI: http://dx.doi.org/10.1016/j.apmr.2013.12.016

DOI: http://dx.doi.org/10.1191/0269215502cr512oa

DOI: http://dx.doi.org/10.5782/KAIS.2014.15.11.677

Fig. 1] Physical therapy setting

Fig. 2] Go-Stop card game (a task oriented game).

[27] I. G. van de Port, L. E. Wevers, E. Lindeman, G. Kwalkeel, “Effects of circuit training as alternative to usual physiotherapy after stroke: randomised controlled trial."
Effects of Group Task-Oriented Circuit Training on Motor Function, ADLs and Quality of Life in Individuals with Chronic Stroke: A Case Study

DOI: http://dx.doi.org/10.3109/09638288.2014.884172

DOI: http://dx.doi.org/10.1161/01.STR.0000180861.54180.FF

Myung-Sook Ko
[Regular member]

- Feb. 1992 : Yonsei Univ., Dept. of Physical Therapy, Bachelor
- Feb. 2005 : Yonsei Univ., Dept. of Physical Therapy, Master
- Sep. 2010 ~ current : Yonsei Univ., Dept. of Physical Therapy, The Graduate School

<Research Interests>
Neurorehabilitation

Hye-Seon Jeon
[Regular member]

- Feb. 1990 : Yonsei Univ., Dept. of Physical Therapy, Bachelor
- May. 1998 : Florida Univ., Dept. of Physical Therapy, Master
- Aug. 2003 : Florida Univ., Dept. of Rehabilitation Science, Ph.D.
- Mar. 2004 ~ current : Yonsei Univ., Dept. of Physical Therapy, Professor

<Research Interests>
Neurorehabilitation, Motor control

Sujin Hwang
[Regular member]

- Feb. 2009 : Hankuk Univ., Sanhak, MS
- Feb. 2009 : Yonsei Univ., Dep. of Physical Therapy, PhD
- Feb. 2012 ~ Feb. 2013 : Nambu Univ., Dept. of Physical Therapy, Assistive Professor
- Feb. 2013 ~ current : Baekseok Univ., Dept. of Physical Therapy, Assistive Professor

<Research Interests>
Motor control and learning, Gait and posture