Flame Retardancy and Physical Properties of Ethylene Vinyl Acetate/Aluminum Trihydroxide Composites

에틸렌 비닐아세테이트/수산화알루미늄 복합재료의 난연 및 물리적 특성

  • Lee, Minho (Green Process and Material R&D Group, Korea Institute of Industrial Technology) ;
  • Yu, Dayeong (Green Process and Material R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Yeongho (Department of Chemical Engineering, University of Suwon) ;
  • Lee, Sunghee (Department of Chemical Engineering, University of Suwon) ;
  • Kim, Jeong Ho (Department of Chemical Engineering, University of Suwon) ;
  • Lee, Young Chul (Green Process and Material R&D Group, Korea Institute of Industrial Technology)
  • 이민호 (한국생산기술연구원 그린공정소재연구실용화그룹) ;
  • 유다영 (한국생산기술연구원 그린공정소재연구실용화그룹) ;
  • 김영호 (수원대학교 화학공학과) ;
  • 이성희 (수원대학교 화학공학과) ;
  • 김정호 (수원대학교 화학공학과) ;
  • 이영철 (한국생산기술연구원 그린공정소재연구실용화그룹)
  • Received : 2014.09.02
  • Accepted : 2014.10.29
  • Published : 2015.05.25


Aluminum trihydroxide (ATH) has been commonly employed as a flame retardant for ethylene vinyl acetate (EVA) copolymers. In the present work, ATH was obtained from a recycling process of multi-layer packaging film wastes. EVA/ATH composite samples were prepared using a two roll-mill and flame retardancy of EVA/ATH composites were examined using limiting oxygen index (LOI) and flame retardancy test (UL94). We observed excellent flame retardancy in case of adding 150 phr or more of recycled ATH to EVA. Particle size and specific surface area play crucial roles in LOI value and UL-94 classification of the EVA/ATH composites. Smaller particle size and higher specific surface area of ATH was found out to improve the flame retardancy. Regarding tensile properties, crosslinked EVA/ATH compounds which is practically used for electric cables had similar to or even better tensile property values than the ones without ATH.


recycled aluminum trihydroxide;limiting oxygen index;UL-94 test;ethylene vinyl acetate copolymer;recycling


Supported by : 한국생산기술연구원


  1. N. H. Huang, Z. J. Chen, C. H. Yi, and J. Q. Wang, eXPRESS Polym. Lett., 4, 227 (2010).
  2. M. L. Rosa, A. Tankink, and M. Hoch, Proceedings of the 57th International Wire and Cable Symposium, 125 (2008).
  3. L. Zhang, C. Z. Li, Q. Zhou, and W. Shao, J. Mater. Sci., 42, 4227 (2007).
  4. J. R. Lee, C. S. Choi, and H. J. Kang, Polym. Korea, 33, 131 (2009).
  5. S. J. Kim, B. S. Shin, J. L. Hong, W. J. Cho, and C. S. Ha, Polymer, 42, 4073 (2001).
  6. T. S. Hwang, B. J. Lee, Y. K. Yang, J. H. Choi, and H. J. Kim, Prospectives of Industrial Chemistry, 8, 36 (2005).
  7. R. N. Rothon and P. R. Hornsby, Polym. Degrad. Stabil., 54, 383 (1996).
  8. G. Beyer, Fire Mater., 25, 193 (2001).
  9. X. Zhang, F. Guo, J. Chen, G. Wang, and H. Liu, Polym. Degrad. Stabil., 87, 411 (2005).
  10. M. A. Cardenas, D. Garcia-Lopez, I. Gobernado-Mitrea, J. C. Merino, J. M. Pastor, J. D. D. Martnez, J. Barbeta, and D. Calveras, Polym. Degrad. Stabil., 93, 2032 (2008).
  11. D. Price, F. Gao, G. J. Milnes, B. Eling, C. I. Lindsay, and P. T. McGrail, Polym. Degrad. Stabil., 64, 403 (1999).
  12. Y. C. Lee and H. C. Lee, Korean Patent 0528646 (2005).
  13. D. J. Hwang, K. H. Cho, M. K. Choi, J. W. Ahn, C. Han, and J. D. Lee, Korean Chem. Eng. Res., 48, 205 (2010).
  14. K. Thaworn, P. Buahom, and S. Areerat, Open J. Polym. Chem., 2, 77 (2012).