DOI QR코드

DOI QR Code

NEW CHARACTERIZATIONS OF COMPOSITION OPERATORS BETWEEN BLOCH TYPE SPACES IN THE UNIT BALL

  • Fang, Zhong-Shan ;
  • Zhou, Ze-Hua
  • Received : 2013.11.20
  • Published : 2015.05.31

Abstract

In this paper, we give new characterizations of the boundedness and compactness of composition operators $C_{\varphi}$ between Bloch type spaces in the unit ball $\mathbb{B}^n$, in terms of the power of the components of ${\varphi}$, where ${\varphi}$ is a holomorphic self-map of $\mathbb{B}^n$.

Keywords

composition operator;compactness;Bloch type spaces;unit ball;several complex variables

References

  1. C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
  2. H. Chen and P. Gauthier, Composition operators on $\mu$-Bloch spaces, Canad. J. Math. 61 (2009), no. 1, 50-75. https://doi.org/10.4153/CJM-2009-003-1
  3. J. Dai, Compact composition operators on the Bloch space of the unit ball, J. Math. Anal. Appl. 386 (2012), no. 1, 294-299. https://doi.org/10.1016/j.jmaa.2011.07.067
  4. K. Esmaeili and M. Lindstrom, Weighted composition operators between Zygmund type spaces and their essential norms, Integral Equations Operator Theory 75 (2013), no. 4, 473-490. https://doi.org/10.1007/s00020-013-2038-4
  5. Z. S. Fang, Compact composition operators between Bloch type spaces in the polydisk, Abstr. Appl. Anal. 2012 (2012), Article ID 732709, 7 pp.
  6. Z. S. Fang and Z. H. Zhou, Essential norms of composition operators between Bloch type spaces in the polydisk, Arch. Math. (Basel) 99 (2012), no. 6, 547-556. https://doi.org/10.1007/s00013-012-0457-0
  7. O. Hyvarinen, M. Kemppainen, M. Lindstrom, A. Rautio, and E. Saukko,The essential norm of weighted composition operators on weighted Banach spaces of analytic functions, Integral Equations Operator Theory 72 (2012), no. 2, 151-157. https://doi.org/10.1007/s00020-011-1919-7
  8. O. Hyvarinen and M. Lindstrom, Estimates of essential norms of weighted composition operators between Bloch-type spaces, J. Math. Anal. Appl. 393 (2012), no. 1, 38-44. https://doi.org/10.1016/j.jmaa.2012.03.059
  9. Y. X. Liang and Z. H. Zhou, Essential norm of the product of differentiation and com- position operators between Bloch-type spaces, Arch. Math. (Basel) 100 (2013), no. 4, 347-360. https://doi.org/10.1007/s00013-013-0499-y
  10. Y. X. Liang and Z. H. Zhou, New estimate of essential norm of composition followed by differentiation between Bloch-type spces, Banach J. Math. Anal. 7 (2013), 160-172. https://doi.org/10.15352/bjma/1358864556
  11. K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (1995), no. 7, 2679-2687. https://doi.org/10.1090/S0002-9947-1995-1273508-X
  12. J. Manhas and R. Zhao, New estimates of essential norms of weighted composition operators between Bloch type spaces, J. Math. Anal. Appl. 389 (2012), no. 1, 32-47. https://doi.org/10.1016/j.jmaa.2011.11.039
  13. J. H. Shapiro, The essential norm of a composition operator, Ann. Math. 125 (1987), no. 2, 375-404. https://doi.org/10.2307/1971314
  14. J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.
  15. S. Stevic, On new Bloch-type spaces, Appl. Math. Comput. 215 (2009), no. 2, 841-849. https://doi.org/10.1016/j.amc.2009.06.009
  16. S. Stevic, R. Y. Chen, and Z. H. Zhou, Weighted composition operators between Bloch-type spaces in the polydisk, Sbornik Mathematics 201 (2010), no. 2, 289-319. https://doi.org/10.1070/SM2010v201n02ABEH004073
  17. Y. Wu and H. Wulan, Products of differentiation and composition operators on the Bloch space, Collect. Math. 63 (2012), no. 1, 93-107. https://doi.org/10.1007/s13348-010-0030-8
  18. H. Wulan, D. Zheng, and K. Zhu, Compact composition operators on BMO and the Bloch space, Proc. Amer. Math. Soc. 137 (2009), no. 11, 3861-3868. https://doi.org/10.1090/S0002-9939-09-09961-4
  19. R. Zhao, Essential norms of composition operators between Bloch type spaces, Proc. Amer. Math. Soc. 138 (2010), no. 7, 2537-2546. https://doi.org/10.1090/S0002-9939-10-10285-8
  20. Z. H. Zhou, Y. X. Liang, and X. T. Dong, Weighted composition operator between weighted-type space and Hardy space on the unit ball, Ann. Polon. Math. 104 (2012), no. 3, 309-319. https://doi.org/10.4064/ap104-3-7
  21. Z. H. Zhou and J. H. Shi, Compact composition operators on the Bloch space in the polydisk, Sci. China Ser. A 44 (2001), no. 3, 286-291. https://doi.org/10.1007/BF02878708
  22. Z. H. Zhou and J. H. Shi, Composition operators on the Bloch space in the polydisk, Complex Variables 46 (2001), no. 1, 73-88. https://doi.org/10.1080/17476930108815398
  23. Z. H. Zhou and J. H. Shi, Compactness of composition operators on the Bloch space in classical bounded symmetric domains, Michigan Math. J. 50 (2002), no. 2, 381-405. https://doi.org/10.1307/mmj/1028575740
  24. H. G. Zeng and Z. H. Zhou, Essential norm estimate of a composition operator between Bloch-type spaces in the unit ball, Rocky Mountain J. Math. 42 (2012), no. 3, 1049-1071. https://doi.org/10.1216/RMJ-2012-42-3-1049
  25. K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990.

Acknowledgement

Supported by : National Natural Science Foundation of China