DOI QR코드

DOI QR Code

POINTWISE ESTIMATES AND BOUNDEDNESS OF GENERALIZED LITTLEWOOD-PALEY OPERATORS IN BMO(ℝn)

  • Wu, Yurong ;
  • Wu, Huoxiong
  • Received : 2014.03.21
  • Published : 2015.05.31

Abstract

In this paper, we study the generalized Littlewood-Paley operators. It is shown that the generalized g-function, Lusin area function and $g^*_{\lambda}$-function on any BMO function are either infinite everywhere, or finite almost everywhere, respectively; and in the latter case, such operators are bounded from BMO($\mathbb{R}^n$) to BLO($\mathbb{R}^n$), which improve and generalize some previous results.

Keywords

generalized Littlewood-Paley operators;BMO spaces;BLO spaces

References

  1. L. Bao and X. Tao, The Boundedness of generalized g-function in Campanato spaces, J. Ninbo Univ. 21 (2008), no. 3, 354-357.
  2. A. Benedek, A. Calderon, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Natl. Acad. Sci. USA 48 (1962), no. 3, 356-365. https://doi.org/10.1073/pnas.48.3.356
  3. J. Chen, Theory of singular integral, Preprint, 1997.
  4. J. Chen, D. Fan, and Y. Ying, Singular integral operators on function spaces, J. Math. Anal. Appl. 276 (2002), no. 2, 691-708. https://doi.org/10.1016/S0022-247X(02)00419-5
  5. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 (1980), no. 2, 249-254.
  6. Y. Han, On some properties of the s-function and the Marcinkiewicz integral, Acta Sci. Natur. Univ. Pekinensis 33 (1987), no. 5, 21-34.
  7. D. Kurtz, Littlewood-Paley operators on BMO, Proc. Amer. Math. Soc. 99 (1987), no. 4, 657-666. https://doi.org/10.1090/S0002-9939-1987-0877035-1
  8. M. Leckband, A note on exponential integrability and pointwise estimates of Littlewood- Paley functions, Proc. Amer. Math. Soc. 109 (1990), no. 1, 185-194.
  9. H. Lin, E. Nakai, and D. Yang, Boundedness of Lusin-area and $g^*_{\lambda}$ functions on localized BMO spaces over doubling metric measure spaces, Bull. Sci. Math. 135 (2011), no. 1, 59-88. https://doi.org/10.1016/j.bulsci.2010.03.004
  10. Y. Meng and D. Yang, Estimates for Littlewood-Paley operators in $BMO(\mathbb{R}n)$, J. Math. Anal. Appl. 346 (2008), no. 1, 30-38. https://doi.org/10.1016/j.jmaa.2008.05.039
  11. S. Qiu, Boundedness of Littlewood-Paley operators and Marcinkiewicz integral on ${\varepsilon}^{{\alpha},p}$, J. Math. Res. Exposition 12 (1992), no. 1, 41-50.
  12. E. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466. https://doi.org/10.1090/S0002-9947-1958-0112932-2
  13. E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
  14. Y. Sun, On the BMO boundedness of generalized g-function, J. WenZhou Normal Univ. 19 (1998), no. 6, 4-7.
  15. S. Wang, Some properties of g-functions, Sci. China Ser. A 10 (1984), no. 4, 890-899.
  16. H. Wu, General Littlewood-Paley functions and singular integral operators on product spaces, Math. Nachr. 279 (2006), no. 4, 431-444. https://doi.org/10.1002/mana.200310369

Acknowledgement

Supported by : NNSF