DOI QR코드

DOI QR Code

Effects of Lithium Bis(Oxalate) Borate as an Electrolyte Additive on High-Temperature Performance of Li(Ni1/3Co1/3Mn1/3)O2/Graphite Cells

LiBOB 전해액 첨가제 도입에 따른 Li(Ni1/3Co1/3Mn1/3)O2/graphite 전지의 고온특성

  • Received : 2015.02.09
  • Accepted : 2015.04.08
  • Published : 2015.05.31

Abstract

The effects of electrolyte additives, lithium bis(oxalate)borate (LiBOB), fluoroethylene carbonate (FEC), vinylene carbonate (VC), 2-(triphenylphosphoranylidene) succinic anhydride (TPSA), on high-temperature storage properties of $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$/graphite are investigated with coin-type full cells. The 1 wt.% LiBOB-containing electrolyte showed the highest capacity retention after high temperature ($60^{\circ}C$) storage for 20 days, 86.7%, which is about 5% higher than the reference electrolyte, 1.15M lithium hexafluorophosphate ($LiPF_6$) in ethylene carbonate/ethyl methyl carbonate (EC/EMC, 3/7 by volume). This enhancement is closely related to the formation of semi-carbonate compounds originated from $BOB^-$ anions, thereby resulting in lower SEI thickness and interfacial resistance after storage. In addition, the 1 wt.% LiBOB-containing electrolyte also exhibited better cycle performance at 25 and $60^{\circ}C$ than the reference electrolyte, which indicates that LiBOB is an effective additive for high-temperature performance of $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$/graphite chemistry.

Keywords

electrolyte additive;high temperature storage;lithium bis(oxalate) borate;solid electrolyte;interphase

References

  1. M. Armand and J.-M. Tarascon, 'Building better batteries' Nature, 451, 652 (2008). https://doi.org/10.1038/451652a
  2. B. Scrosati, J. Hassoun, and Y.-K. Sun, 'Lithium-ion batteries. A look into the future' Energy Environ. Sci., 4, 3287 (2011). https://doi.org/10.1039/c1ee01388b
  3. C. Liu, F. Li, L. P. Ma, and H. M. Cheng, 'Advanced materials for energy storage' Adv. Mater., 22, E28 (2010) https://doi.org/10.1002/adma.200903328
  4. F. Conte, 'Battery and battery management for hybrid electric vehicles: a review' Elektrotechnik & Informationstechnik, 123, 424 (2006). https://doi.org/10.1007/s00502-006-0383-6
  5. C. Chan, 'The state of the art of electric, hybrid, and fuel cell vehicles' Proc. IEEE, 95, 704 (2007). https://doi.org/10.1109/JPROC.2007.892489
  6. E. Karden, S. Ploumen, B. Fricke, T. Miller, and K. Snyder, 'Energy storage devices for future hybrid electric vehicles' J. Power Sources, 168, 2 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.090
  7. S. Santee, A. Xiao, L. Yang, J. Gnanaraj, and B. L. Lucht, 'Effect of combinations of additives on the performance of lithium ion batteries' J. Power Sources, 194, 1053 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.012
  8. D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, and U. Heider, 'On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries' Electrochim. Acta, 47, 1423 (2002). https://doi.org/10.1016/S0013-4686(01)00858-1
  9. T. Sasaki, T. Abe, Y. Iriyama, M. Inaba, and Z. Ogumi, 'Suppression of an alkyl dicarbonate formation in Li-ion cells' J. Electrochem. Soc., 152, A2046 (2005). https://doi.org/10.1149/1.2034517
  10. L. Zhao, S. Okada, and J.-I. Yamaki, 'Effect of VC additive on MFA-based electrolyte in Li-ion batteries' J. Power Sources, 244, 369 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.098
  11. M. Lu, H. Cheng, and Y. Yang, 'A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells' Electrochim. Acta, 53, 3539 (2008). https://doi.org/10.1016/j.electacta.2007.09.062
  12. M. Xu, W. Li, X. Zuo, J. Liu, and X. Xu, 'Performance improvement of lithium ion battery using PC as a solvent component and BS as an SEI forming additive' J. Power Sources, 174, 705 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.112
  13. J. Li, W. Yao, Y. S. Meng, and Y. Yang, 'Effects of vinyl ethylene carbonate additive on elevated-temperature performance of cathode material in lithium ion batteries' J. Phys. Chem. C, 112, 12550 (2008).
  14. L. Larush-Asraf, M. Biton, H. Teller, E. Zinigrad and D. Aurbach, 'On the electrochemical and thermal behavior of lithium bis (oxalato) borate (LiBOB) solutions' J. Power Sources, 174, 400 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.171
  15. M.-H. Ryou, G.-B. Han, Y. M. Lee, J.-N. Lee, D. J. Lee, Y. O. Yoon, and J.-K. Park, 'Effect of fluoroethylene carbonate on high temperature capacity retention of $LiMn_2O_4/graphite$ Li-ion cells' Electrochim. Acta, 55, 2073 (2010). https://doi.org/10.1016/j.electacta.2009.11.036
  16. N. N. Sinha, J. Burns, and J. Dahn, 'Storage studies on Li/graphite cells and the impact of So-called SEI-forming electrolyte additives' J. Electrochem. Soc., 160, A709 (2013). https://doi.org/10.1149/2.008306jes
  17. W. Lu, Z. Chen, H. Joachin, J. Prakash, J. Liu, and K. Amine, 'Thermal and electrochemical characterization of $MCMB/LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ using LiBOB as an electrolyte additive' J. power sources, 163, 1074 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.010
  18. H. Ota, K. Shima, M. Ue, and J.-I. Yamaki, 'Effect of vinylene carbonate as additive to electrolyte for lithium metal anode' Electrochim. Acta, 49, 565 (2004). https://doi.org/10.1016/j.electacta.2003.09.010
  19. M.-H. Ryou, J.-N. Lee, D. J. Lee, W.-K. Kim, J. W. Choi, J.-K. Park, and Y. M. Lee, '2-(triphenylphosphoranylidene) succinic anhydride as a new electrolyte additive to improve high temperature cycle performance of $LiMn_2O_4/graphite$ Li-ion batteries' Electrochim. Acta, 102, 97 (2013). https://doi.org/10.1016/j.electacta.2013.03.129
  20. A. Prakash, P. Manikandan, K. Ramesha, M. Sathiya, J. Tarascon, and A. Shukla, 'Solution-combustion synthesized nanocrystalline $Li_4Ti_5O_{12}$ as high-rate performance Li-ion battery anode' Chem. Mater., 22, 2857 (2010). https://doi.org/10.1021/cm100071z
  21. T. Yoon, S. Park, J. Mun, J. H. Ryu, W. Choi, Y.-S. Kang, J.-H. Park, and S. M. Oh, 'Failure mechanisms of $LiNi_{0.5}Mn_{1.5}O_4$ electrode at elevated temperature' J. Power Sources, 215, 312 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.103
  22. J.-H. Kim, S. C. Woo, M.-S. Park, K. J. Kim, T. Yim, J.-S. Kim, and Y.-J. Kim, 'Capacity fading mechanism of $LiFePO_4$-based lithium secondary batteries for stationary energy storage' J. Power Sources, 229, 190 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.024
  23. T. Eriksson, A. M. Andersson, A. G. Bishop, C. Gejke, T. Gustafsson, and J. O. Thomas, 'Surface analysis of $LiMn_2O_4$ electrodes in carbonate-based electrolytes' J. Electrochemical Society, 149, A69 (2002). https://doi.org/10.1149/1.1426398
  24. K. Colbow, J. Dahn, and R. Haering, 'Structure and electrochemistry of the spinel oxides $LiTi_2O_4$ and $Li_{4/3}Ti_{5/3}O_4$' J. Power Sources, 26, 397 (1989). https://doi.org/10.1016/0378-7753(89)80152-1
  25. E. Ferg, R. Gummow, A. De Kock, and M. Thackeray, 'Spinel anodes for lithium-ion batteries' J. Electrochem. Soc., 141, L147 (1994). https://doi.org/10.1149/1.2059324
  26. K. Zaghib, M. Armand, and M. Gauthier, 'Electrochemistry of anodes in solid-state Li-ion polymer batteries' J. Electrochem. Soc., 145, 3135 (1998). https://doi.org/10.1149/1.1838776
  27. R. Yazami and Y. F. Reynier, 'Mechanism of self-discharge in graphite-lithium anode' Electrochim. Acta, 47, 1217 (2002). https://doi.org/10.1016/S0013-4686(01)00827-1
  28. K. Abe, T. Hattori, K. Kawabe, Y. Ushigoe, and H. Yoshitake, 'Functional electrolytes triple-bonded compound as an additive for negative electrode' J. Electrochem. Soc., 154, A810 (2007). https://doi.org/10.1149/1.2746570
  29. A. Andersson, A. Henningson, H. Siegbahn, U. Jansson, and K. Edstrom, 'Electrochemically lithiated graphite characterised by photoelectron spectroscopy' J. power sources, 119, 522 (2003).
  30. K. Xu, U. Lee, S. Zhang, M. Wood, and T. R. Jow, 'Chemical analysis of graphite/electrolyte interface formed in LiBOB-based electrolytes' Electrochem. solidstate lett., 6, A144 (2003). https://doi.org/10.1149/1.1576049
  31. Z. Chen, W. Lu, J. Liu, and K. Amine, '$LiPF_6/LiBOB$ blend salt electrolyte for high-power lithium-ion batteries' Electrochim. Acta, 51, 3322 (2006). https://doi.org/10.1016/j.electacta.2005.09.027
  32. D. Aurbach, B. Markovsky, A. Shechter, Y. Ein-Eli and H. Cohen, 'A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures' J. Electrochem. Society, 143, 3809 (1996). https://doi.org/10.1149/1.1837300
  33. R. Dedryvere, S. Laruelle, S. Grugeon, L. Gireaud, J.-M. Tarascon, and D. Gonbeau, 'XPS identification of the organic and inorganic components of the electrode/electrolyte interface formed on a metallic cathode' J. Electrochem. Soc., 152, A689 (2005). https://doi.org/10.1149/1.1861994
  34. Y. K. Kwon, W. Choi, H.-S. Choi, and J. K. Lee, 'Effect of lithium difluoro (oxalato) borate on $LiMn_2O_4$-activated carbon hybrid capacitors' Electron. Mater. Lett., 9, 751 (2013). https://doi.org/10.1007/s13391-013-6001-y
  35. M. H. Ryou, Y. M. Lee, J. K. Park, and J. W. Choi, 'Mussel-Inspired Polydopamine-Treated Polyethylene Separators for High-Power Li-Ion Batteries' Adv. Mater., 23, 3066 (2011). https://doi.org/10.1002/adma.201100303
  36. M. H. Ryou, D. J. Lee, J. N. Lee, Y. M. Lee, J. K. Park, and J. W. Choi, 'Excellent Cycle Life of Lithium-Metal Anodes in Lithium-Ion Batteries with Mussel-Inspired Polydopamine-Coated Separators' Adv. Energy Mater., 2, 645 (2012). https://doi.org/10.1002/aenm.201100687

Cited by

  1. Electrochemical Properties of Poly(Styrenesulfonate)-Carbon Composite Anode for Organic Rechargeable Battery vol.19, pp.4, 2016, https://doi.org/10.5229/JKES.2016.19.4.129
  2. Enhanced High-Temperature Performance of LiNi0.6Co0.2Mn0.2O2Positive Electrode Materials by the Addition of nano-Al2O3during the Synthetic Process vol.19, pp.3, 2016, https://doi.org/10.5229/JKES.2016.19.3.80