DOI QR코드

DOI QR Code

ON INTERVAL-VALUED FUZZY LATTICES

LEE, JEONG GON;HUR, KUL;LIM, PYUNG KI

  • Received : 2014.12.22
  • Accepted : 2015.01.15
  • Published : 2015.06.25

Abstract

We discuss the relationship between interval-valued fuzzy ideals and interval-valued fuzzy congruence on a distributive lattice L and show that for a generalized Boolean algebra the lattice of interval-valued fuzzy ideals is isomorphic to the lattice of interval-valued fuzzy congruences. Finally we consider the products of interval-valued fuzzy ideals and obtain a necessary and sufficient condition for an interval-valued fuzzy ideal on the direct sum of lattices to be representable as a direct sum of interval-valued fuzzy ideals on each lattice.

Keywords

interval-valued fuzzy sublattice;interval-valued fuzzy ideal;interval-valued fuzzy filter;interval-valued fuzzy congruence

References

  1. N. Ajmal and K. V. Thomas, Fuzzy lattices, Inform. Sci.79(1994), 271-291. https://doi.org/10.1016/0020-0255(94)90124-4
  2. R. Biswas, Rosenfeld's fuzzy subgroups with interval-valued membership functions, Fuzzy set and Systems 63(1995), 87-90.
  3. J. Y. Choi, S. R. Kim and K. Hur, Interval-valued smooth topological spaces, Honam Math. J. 32(4)(2010), 711-738. https://doi.org/10.5831/HMJ.2010.32.4.711
  4. M. B. Gorzalczany, A method of inference in approximate reasoning based on interval-values fuzzy sets, Fuzzy sets and Systems 21(1987), 1-17. https://doi.org/10.1016/0165-0114(87)90148-5
  5. G. Gratzer, General Lattice Theory, Academic Press (1978).
  6. K. Hur, J. G. Lee and J. Y. Choi, Interval-valued fuzzy relations, J. Korean Institute of Intelligent systems 19(3)(2009), 425-432. https://doi.org/10.5391/JKIIS.2009.19.3.425
  7. H. W. Kang and K. Hur, Interval-valued fuzzy subgroups and rings, Honam. Math. J. 32(4)(2010), 593-617. https://doi.org/10.5831/HMJ.2010.32.4.593
  8. K. C. Lee, K. Hur and P. K. Lim, Interval-valued fuzzy subgroups and level subgroups, Honam Math. J. 35(3)(2013), 525-540. https://doi.org/10.5831/HMJ.2013.35.3.525
  9. T. K. Mondal and S. K. Samanta, Topology of interval-valued fuzzy sets, Indian J. Pure Appl. Math 30(1)(1999), 20-38.
  10. B. Yuan and W. Wu, Fuzzy ideals on a distributive lattice, Fuzzy Sets and Systems(1990)
  11. L. A. Zadeh, Fuzzy sets, Inform. and Control 8(1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  12. K. Hur, H. W. Kang and H. K. Song, The concept of a linguistic variable and its application to approximate reasoning I, Inform. Sci. 8(1975), 199-249. https://doi.org/10.1016/0020-0255(75)90036-5

Acknowledgement

Supported by : Wonkwang University