DOI QR코드

DOI QR Code

야생 참나리(Lilium lancifolium Thunb.)로부터 분리한 효모의 분자계통학적 분석

김종식;김대신
Kim, Jong-Shik;Kim, Dae-Shin

  • 투고 : 2015.01.10
  • 심사 : 2015.06.03
  • 발행 : 2015.06.30

초록

효모의 유용 기능을 탐색하기 위해서 참나리에 정착하는 효모 군집을 분석하였다. 본 연구에서는 잎에서 총 82 균주, 줄기에서 총 94 균주, 꽃에서는 총 97 균주를 분리하였다. 분리된 균주를 ITS 1과 4 primer를 사용하여 ITS 영역 염기서열의 계통분석을 실시한 결과, 참나리 잎에서는 Pseudozyma가 31 균주, Aureobasidium pullulans가 28 균주, Cryptococcus가 11 균주, 줄기에서는 A. pullulans가 40 균주, Cryptococcus가 23균주, Candida 11 균주, 꽃에서는 A. pullulans가 95 균주, Rhodotorula 1 균주, Metschnikowia 1 균주가 분포하였다. 특히, 참나리 잎과 줄기, 꽃 모든 시료에서 A. pullulans가 우점하였으며, 꽃에서는 97 균주 중에서 95 균주의 A. pullulans가 검출되어 한 종이 절대적으로 우점함을 알 수가 있었다. 참나리 잎에서는 82 균주 중에서 Pseudozyma가 31 균주로 가장 우점함을 보였으며, 참나리 줄기에서는 94 분리 균주 중에서 Cryptococcus가 23 균주로 두번째로 우점함을 보였다. 참나리의 부위별로 분포양상이 다름을 확인하였다. 향후 이들 효모 균주들의 바이오테크놀로지 분야에 응용을 기대해본다.

키워드

Aureobasidium pullulans;ITS gene;Tiger lily;Yeast

참고문헌

  1. Botha, A. (2011). The importance and ecology of yeasts in soil. Soil Biology &. Biochemistry, 43(1), 1-8. https://doi.org/10.1016/j.soilbio.2010.10.001
  2. Choi, S. C., Kim, M. U., & Kim, J. S. (2013). Selective isolation and phylogeny of the yeast species associated with Aloe vera and Aloe saponaria. Korean Journal of Environmental Agriculture, 32(3), 240-243. https://doi.org/10.5338/KJEA.2013.32.3.240
  3. Deak, T. (2009). Ecology and biodiversity of yeasts with potential value in biotechnology. Yeast Biotechnology:Diversity and Applications (Ed. Satyanarayana, T., & Kunze, G.), pp. 151-168. Springer Science + Business Media B.V., Dordrecht, Netherlands.
  4. Fonseca, A., & Inacio, J. (2006). Phylloplane yeasts. Biodiversity and Ecophysiology of Yeasts (ed. Rosa, C. A., & Peter, G.), pp. 263-301. Springer, Berlin.
  5. Jeknic, Z., Morre, J. T., Jeknic, S., Jevremovic, S., Subotic, A. & Chen, T. H. H. (2012). Cloning and functional characterization of a gene for capsanthin-capsorubin synthase from tiger lily (Lilium lancifolium Thunb. 'Splendens'). Plant and Cell Physiology, 53(11), 1899-1912. https://doi.org/10.1093/pcp/pcs128
  6. Kim, J. S., Lee, I. K., & Yun, B. S. (2015). A novel biosurfactant production by Aureobasidium pullulans L3-GPY from a tiger lily wild flower, Lilium lancifolium Thunb. PlosOne, 10(4), e0122917. https://doi.org/10.1371/journal.pone.0122917
  7. Leathers, T. D., Rich, J. O., Anderson, A. M., & Manitchotpisit, P. (2013). Lipase production by diverse phylogenetic clades of Aureobasidium pullulans. Biotechnology Letters, 35(10), 1701-1706. https://doi.org/10.1007/s10529-013-1268-5
  8. Lee, T. B. (2014). Coloured Flora of Korea, Vol. I, II. Hayangmunsa, Seoul. p. 1828. (In Korean)
  9. Lee, W. T. (1996). Coloured Standard Illustrations of Korean Plants, Academy Publishing Co., Seoul. p. 624. (In Korean)
  10. Ma, Z. C., Chi, Z., Geng, Q., Zhang, F., & Chi, Z. M. (2012). Disruption of the pullulan synthetase gene in siderophore-producing Aureobasidium pullulans enhances siderophore production and simplifies siderophore extraction. Process Biochemistry, 47(12), 1807-1812. https://doi.org/10.1016/j.procbio.2012.06.024
  11. Maksimova, I. A., Yurkov, A. M., & Chernov I. Y. (2009). Spatial structure of epiphytic yeast communities on fruits of Sorbus aucupaia L. Biology Bulletin, 36(6), 613-618. https://doi.org/10.1134/S1062359009060107
  12. Manitchotpisit, P., Skory, C. D., Peterson, S. W., Price, N. P., Vermillion, K. E., & Leathers, T. D. (2012). Poly($\beta$-L-malic acid) production by diverse phylogenetic clades of Aureobasidium pullulans. Journal of Industrial Microbiology Biotechnology, 39(1), 125-132. https://doi.org/10.1007/s10295-011-1007-7
  13. Mari, M., Martini, C., Spadoni, A., Rouissi, W., & Bertolini, P. (2012). Biocontrol of apple postharvest decay by Aureobasidium pullulans. Postharvest Biology & Technology, 73, 56-62. https://doi.org/10.1016/j.postharvbio.2012.05.014
  14. Raspor, P., & Zupan, J. (2006). Yeast in extreme environments. Biodiversity and Ecophysiology of Yeasts (ed. Rosa, C. A., & Peter, G.), pp. 370-417. Springer, Berlin.
  15. Rich, J. O., Manitchotpisit, P., Peterson, S. W., & Leathers, T. D. (2011). Laccase production by diverse phylogenetic clades of Aureobasidium pullulans. Rangsit Journal of Arts & Sciences, 1(1), 41-47.
  16. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology & Evolution, 4(4), 406–425.
  17. Singh, R. S., Saini, G. K., & Kennedy, J. F. (2008). Pullulan: Microbial sources, production and applications. Carbohydrate Polymers, 73(4), 515-531. https://doi.org/10.1016/j.carbpol.2008.01.003
  18. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology & Evolution, 28(10), 2731-2739. https://doi.org/10.1093/molbev/msr121
  19. Tamang, J. P., & Fleet, G. H. (2009). Yeasts diversity in fermented foods and beverages. Yeast Biotechnology: Diversity and Applications (Ed. Satyanarayana, T., & Kunze, G.), pp. 169-198. Springer Science + Business Media B. V., Dordrecht, Netherlands.
  20. White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplication and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications (Ed. Innis, M. A., Gelfand, D. H., Sninsky, J. J., & White, T. J.), pp. 315-322. Academic Press, San Diego, USA.

피인용 문헌

  1. Yeasts in the Flowers of Wild Fleabane [Erigeron annus (L.) Pers.] vol.34, pp.3, 2015, https://doi.org/10.5338/KJEA.2015.34.3.24
  2. Yeasts Associated with Roots of the Endemic Plant Mankyua chejuense vol.35, pp.2, 2016, https://doi.org/10.5338/KJEA.2016.35.2.18

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)