Dy3+와 Eu3+ 이온이 동시 도핑된 CaMoO4 형광체의 합성과 발광 특성



Kim, Junhan;Cho, Shinho

  • 투고 : 2015.06.10
  • 심사 : 2015.06.29
  • 발행 : 2015.06.30


$Dy^{3+}$- and $Eu^{3+}$-codoped $CaMoO_4$ Phosphors were synthesized by using the solid-state reaction method. The crystal structure, morphology, and optical properties of the resulting phosphor particles were investigated by using the X-ray diffraction, field-emission scanning electron microscopy, and photoluminescence spectroscopy. XRD patterns exhibited that all the synthesized phosphors showed a tetragonal system with a main (112) diffraction peak, irrespective of the content of $Eu^{3+}$ ions. As the content of $Eu^{3+}$ ions increased, the grains showed a tendency to agglomerate. The excitation spectra of the synthesized powders were composed of one strong broad band centered at 305 nm in the range of 220 - 350 nm and several weak peaks in the range of 350 - 500 nm resulting from the 4f transitions of activator ions. Upon ultraviolet excitation at 305 nm, the yellow emission line due to the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of $Dy^{3+}$ ions and the main red emission spectrum resulting from the $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$ ions were observed. With the increase of the content of $Eu^{3+}$, the intensity of the yellow emission band gradually decreased while that of the red emission increased. These results indicated that the emission intensities of yellow and red emissions could be modulated by changing the content of the $Dy^{3+}$ and $Eu^{3+}$ ions incorporated into the host crystal.


Phosphor;Photoluminescence;Solid-state reaction


  1. D. Chen, W. Xiang, X. Liang, J. Zhong, H. Yu, M. Ding, H. Li, Z. Ji, J. Eur. Ceram. Soc., 35(3) (2015) 859. https://doi.org/10.1016/j.jeurceramsoc.2014.10.002
  2. S. Deng, Z. Qiu, M. Zhang, W. Zhou, J. Zhang, C. Li, C. Rong, L. Yu, S. Lian, J. Rare Earth., 33(5) (2015) 463. https://doi.org/10.1016/S1002-0721(14)60441-5
  3. J. Y. Park, J. H. Lee, G. S. R. Raju, B. K. Moon, J. H. Jeong, B. C. Choi, J. H. Kim, Ceram. Int., 40(4) (2014) 5693. https://doi.org/10.1016/j.ceramint.2013.11.007
  4. X. Hu, S. Yan, L. Ma, G. Wan, J. Hu, Powder Technol., 192(1) (2009) 27. https://doi.org/10.1016/j.powtec.2008.11.006
  5. K. Li, C. Shen, Optik, 123(7) (2012) 621. https://doi.org/10.1016/j.ijleo.2011.06.005
  6. Y. Hu, Y. Lu, X. Yu, L. Zhou, J. Yu, J. Rare Earth., 28(1) (2010) 303. https://doi.org/10.1016/S1002-0721(10)60283-9
  7. V. Natarajan, A. R. Dhobale, C. H. Lu, J. Lumin., 129(3) (2009) 290. https://doi.org/10.1016/j.jlumin.2008.10.001
  8. S. D. Han, S. P. Khatkar, V. B. Taxak, G. Sharma, D. Kumar, Mat. Sci. Eng. B, 129(1-3) (2006) 126. https://doi.org/10.1016/j.mseb.2006.01.002
  9. A. Bao, H. Yang, C. Tao, Y. Zhang, L. Han, J. Lumin., 128(1) (2008) 60. https://doi.org/10.1016/j.jlumin.2007.05.011
  10. H. Yu, D. Deng, L. Chen, D. Chen, J. Zhong, H. Zhao, S. Xu, Ceram. Int., 41(3) (2015) 3800. https://doi.org/10.1016/j.ceramint.2014.11.055
  11. H. J. Woo, S. Gandhi, B. J. Kwon, D. S. Shin, S. S. Yi, J. H. Jeong, K. Jang, Ceram. Int., 41(4) (2015) 5547. https://doi.org/10.1016/j.ceramint.2014.12.131
  12. A. Pandey, V. K. Rai, Mater. Res. Bull., 57(9) (2014) 156. https://doi.org/10.1016/j.materresbull.2014.04.071
  13. S. Cho, J. Korean Phys. Soc., 63(5) (2013) 1045. https://doi.org/10.3938/jkps.63.1045
  14. L. Zhang, H. Zhong, X. Li, L. Cheng, L. Yao, J. Sun, J. Zhang, R. Hua, B. Chen, Ceram. Int., 38(6) (2012) 4737. https://doi.org/10.1016/j.ceramint.2012.02.059
  15. S. Cho, J. Korean Vac. Soc., 22(2) (2013) 79. https://doi.org/10.5757/JKVS.2013.22.2.79
  16. J. Zhang, Y. Wang, Y. Wen, F. Zhang, B. Liu, J. Alloy. Compd., 509(14) (2011) 4649. https://doi.org/10.1016/j.jallcom.2011.01.125
  17. K. Sawada, S. Adachi, J. Lumin., 165(1) (2015) 138. https://doi.org/10.1016/j.jlumin.2015.04.032
  18. M. Y. A. Yagoub, H. C. Swart, E. Coetsee, Opt. Mater., 42 (2015) 204. https://doi.org/10.1016/j.optmat.2015.01.011