Subnormality and Weighted Composition Operators on L2 Spaces

  • Received : 2013.07.06
  • Accepted : 2013.10.23
  • Published : 2015.06.23


Subnormality of bounded weighted composition operators on $L^2({\Sigma})$ of the form $Wf=uf{\circ}T$, where T is a nonsingular measurable transformation on the underlying space X of a ${\sigma}$-finite measure space (X, ${\Sigma}$, ${\mu}$) and u is a weight function on X; is studied. The standard moment sequence characterizations of subnormality of weighted composition operators are given. It is shown that weighted composition operators are subnormal if and only if $\{J_n(x)\}^{+{\infty}}_{n=0}$ is a moment sequence for almost every $x{{\in}}X$, where $J_n=h_nE_n({\mid}u{\mid}^2){\circ}T^{-n}$, $h_n=d{\mu}{\circ}T^{-n}/d{\mu}$ and $E_n$ is the conditional expectation operator with respect to $T^{-n}{\Sigma}$.


Subnormal;Weighted composition operators;Conditional expectation;Moment sequence


  1. C. Burnap, I. Jung, Composition operators with weak hyponormality, J. Math. Anal. Appl., 337(2008), 686-694.
  2. C. Burnap, I. Jung and A. Lambert, Separating partial normality classes with composition operators, J. Operator Theory, 53(2005), 381-397.
  3. J. B. Conway, Subnormal Operators, Pitman Publ. Co., London, 1981.
  4. J. B. Conway, The Theory of Subnormal Operators, Math. Surveys Monogr., Amer. Math. Soc., Providence, RI, 1991.
  5. M. Fujii, S. Izumino and R. Nakamoto, Classes of operators determined by the Heinz-Kato-Furuta inequality and the Holder- McCarthy inequality, Nihonkai Math. J., 5(1994), 61-67.
  6. J. Herron, Weighted conditional expectation operators, Oper. Matrices, 5(2011), 107-118.
  7. T. Hoover, A. Lambert and J. Quinn, The Markov process determined by a weighted composition operator, Studia Math., 72(3)(1982), 225-235.
  8. M. R. Jabbarzadeh, M. R. Azimi, Some weak hyponormal classes of weighted composition operators, Bull. Korean Math. Soc., 47(4)(2010), 793-803.
  9. R. Kumar, Ascent and descent weighted composition operators on $L^p$-spaces, Math. Vesnik, 60(2008), 47-51.
  10. A. Lambert, Thomas G. Lucas, Nagata's principle of idealization in relation to module homomorphisms and conditional expectations, Kyungpook Math. J., 40(2000), 327-337.
  11. A. Lambert, Normal extentions of subnormal compostion operators, Michigan Math. J., 35(1988), 443-450.
  12. A. Lambert, Subnormal composition operators, Proc. Amer. Math. Soc., 103(1988), 750-754.
  13. A. Lambert, Hyponormal composition operators, Bull. Lond. Math. Soc., 18(1986), 395-400.
  14. A. Lambert, Subnormality and weighted shifts, Bull. Lond. Math. Soc., 14(2)(1976), 476-480.
  15. E. Nordgren, Composition operators on Hilbert spaces, in: Lecture Notes in Math., 693, Springer-Verlag, Berlin, 1978.
  16. M. M. Rao, Conditional measure and applications, Marcel Dekker, New York, 1993.
  17. R. K. Singh, J. S. Manhas, Composition Operators on Function Spaces, Elsevier Science Publishers B. V., North-Holland, Amsterdam, 1993.
  18. J. Stochel, J. B. Stochel, Seminormal composition operators on L2 spaces induced by matrices: The Laplace density case, J. Math. Anal. Appl., 375(2011), 1-7.
  19. R. Whitley, Normal and quasinormal composition operators, Proc. Amer. Math. Soc., 70(1978), 114-118.
  20. D. Widder, The Laplace transform, Princeton Univ. Press, Princeton, N. J., 1946.

Cited by

  1. Quasinormal extensions of subnormal operator-weighted composition operators in ℓ 2 -spaces vol.452, pp.1, 2017,