DOI QR코드

DOI QR Code

HESITANT FUZZY BI-IDEALS IN SEMIGROUPS

JUN, YOUNG BAE;LEE, KYOUNG JA;SONG, SEOK-ZUN

  • Received : 2015.02.18
  • Published : 2015.06.30

Abstract

Characterizations of hesitant fuzzy left (right) ideals are considered. The notion of hesitant fuzzy (generalized) bi-ideals is introduced, and related properties are investigated. Relations between hesitant fuzzy generalized bi-ideals and hesitant fuzzy semigroups are discussed, and characterizations of (hesitant fuzzy) generalized bi-ideals and hesitant fuzzy bi-ideals are considered. Given a hesitant fuzzy set $\mathcal{H}$ on a semigroup S, hesitant fuzzy (generalized) bi-ideals generated by $\mathcal{H}$ are established.

Keywords

hesitant fuzzy semigroup;hesitant fuzzy left (right) ideal;hesitant fuzzy product;(${\varepsilon}$, ${\delta}$)-characteristic hesitant fuzzy set;(${\varepsilon}$, ${\delta}$)-identity hesitant fuzzy set;hesitant fuzzy (generalized) bi-ideal

References

  1. Y. B. Jun and M. Khan, Hesitant fuzzy ideals in semigroups, (submitted).
  2. Y. B. Jun and S. Z. Song, Hesitant fuzzy set theory applied to filters in MTL-algebras, Honam Math. J. 36 (2014), no. 4, 813-830. https://doi.org/10.5831/HMJ.2014.36.4.813
  3. Y. B. Jun and S. Z. Song, Hesitant fuzzy prefilters and filters of EQ-algebras, Appl. Math. Sci. 9 (2015), 515-532.
  4. R. M. Rodriguez, Luis Martinez and Francisco Herrera, hesitant fuzzy linguistic term sets for decision making, IEEE Trans. Fuzzy Syst. 20 (2012), no. 1, 109-119. https://doi.org/10.1109/TFUZZ.2011.2170076
  5. V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst. 25 (2010), 529-539.
  6. V. Torra and Y. Narukawa, On hesitant fuzzy sets and decision, in: The 18th IEEE International Conference on Fuzzy Systems, pp. 1378-1382, Jeju Island, Korea, 2009.
  7. G. Wei, Hesitant fuzzy prioritized operators and their application to multiple attribute decision making, Knowledge-Based Systems 31 (2012), 176-182. https://doi.org/10.1016/j.knosys.2012.03.011
  8. M. Xia and Z. S. Xu, Hesitant fuzzy information aggregation in decision making, Internat. J. Approx. Reason. 52 (2011), no. 3, 395-407. https://doi.org/10.1016/j.ijar.2010.09.002
  9. M. Xia, Z. S. Xu, and N. Chen, Some hesitant fuzzy aggregation operators with their application in group decision making, Group Decision Negotiation 22 (2013), 259-279. https://doi.org/10.1007/s10726-011-9261-7
  10. Z. S. Xu and M. Xia, Distance and similarity measures for hesitant fuzzy sets, Inform. Sci. 181 (2011), no. 11, 2128-2138. https://doi.org/10.1016/j.ins.2011.01.028
  11. B. Zhu, Z. Xu, and M. Xia, Hesitant fuzzy geometric Bonferroni means, Inform. Sci. 205 (2012), 72-85. https://doi.org/10.1016/j.ins.2012.01.048

Cited by

  1. IDEAL THEORY IN ORDERED SEMIGROUPS BASED ON HESITANT FUZZY SETS vol.38, pp.4, 2016, https://doi.org/10.5831/HMJ.2016.38.4.783
  2. -Semigroups vol.2018, pp.1687-711X, 2018, https://doi.org/10.1155/2018/5738024