DOI QR코드

DOI QR Code

EXTREMAL ATOM-BOND CONNECTIVITY INDEX OF CACTUS GRAPHS

  • ASHRAFI, ALI REZA (Department of Pure Mathematics Faculty of Mathematical Science University of Kashan) ;
  • DEHGHAN-ZADEH, TAYEBEH (Department of Pure Mathematics Faculty of Mathematical Science University of Kashan) ;
  • HABIBI, NADER (Department of Mathematics Faculty of Science University of Ayatollah Ozma Boroujerdi)
  • Received : 2014.03.16
  • Published : 2015.06.30

Abstract

The atom-bond connectivity index of a graph G (ABC index for short) is defined as the summation of quantities $\sqrt{\frac{d(u)+d(v)-2}{d(u)d(v)}}$ over all edges of G. A cactus graph is a connected graph in which every block is an edge or a cycle. The aim of this paper is to obtain the first and second maximum values of the ABC index among all n vertex cactus graphs.

Keywords

ABC index;cactus graph

Acknowledgement

Supported by : University of Kashan

References

  1. B. Ben-Moshe, B. Bhattacharya, and Q. Shi, Efficient algorithms for the weighted 2-center problem in a cactus graph, Algorithms and Computation, 16th Int. Symp., ISAAC 2005, Lecture Notes in Computer Science 3827, pp. 693-03, Springer-Verlag, 2005.
  2. J. Chen and X. Guo, Extreme atom-bond connectivity index of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011), no. 3, 713-722.
  3. K. C. Das, Atom-bond connectivity index of graphs, Discrete Appl. Math. 158 (2010), no. 11, 1181-1188. https://doi.org/10.1016/j.dam.2010.03.006
  4. K. C. Das, I. Gutman, and B. Furtula, On atom-bond connectivity index, Chem. Phys. Lett. 511 (2011), 452-454. https://doi.org/10.1016/j.cplett.2011.06.049
  5. T. Dehghan-Zadeh, A. R. Ashrafi, and N. Habibi, Maximum values of atom-bond connectivity index in the class of tetra-cyclic graphs, submitted.
  6. E. El-Mallah and C. Colbourn, The complexity of some edge deletion problems, IEEE Trans. Circuits and Systems 35 (1988), no. 3, 354-362. https://doi.org/10.1109/31.1748
  7. E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, Chem. Phys. Lett. 463 (2008), 422-425. https://doi.org/10.1016/j.cplett.2008.08.074
  8. E. Estrada, L. Torres, L. Rodriguez, and I. Gutman, An atom-bond connectivity index: modeling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998), 849-855.
  9. G. H. Fath-Tabar, B. Vaez-Zadeh, A. R. Ashrafi, and A. Graovac, Some inequalities for the atom-bond connectivity index of graph operations, Discrete Appl. Math. 159 (2011), no. 13, 1323-1330. https://doi.org/10.1016/j.dam.2011.04.019
  10. B. Furtula, A. Graovac, and D. Vukicevic, Atom-bond connectivity index of trees, Discrete Appl. Math. 157 (2009), no. 13, 2828-2835. https://doi.org/10.1016/j.dam.2009.03.004
  11. L. Gan, H. Hou, and B. Liu, Some results on atom-bond connectivity index of graphs, MATCH Commun. Math. Comput. Chem. 66 (2011), no. 2, 669-680.
  12. L. Gan, B. Liu, and Z. You, The ABC index of trees of given degree sequence, MATCH Commun. Math. Comput. Chem. 68 (2012), no. 1, 137-145.
  13. I. Gutman and B. Furtula, Trees with smallest atom-bond connectivity index, MATCH Commun. Math. Comput. Chem. 68 (2012), no. 1, 131-136.
  14. I. Gutman, B. Furtula, and M. Ivanovic, Notes on trees with minimal atom-bond connectivity index, MATCH Commun. Math. Comput. Chem. 67 (2012), no. 2, 467-482.
  15. N. M. Korneyenko, Combinatorial algorithms on a class of graphs, Discrete Appl. Math. 54 (1994), no. 2-3, 215-217. https://doi.org/10.1016/0166-218X(94)90022-1
  16. M. Lu, L. Zhang, and F. Tian, On the Randic index of cacti, MATCH Commun. Math. Comput. Chem. 56 (2006), no. 3, 551-556.
  17. B. Paten, M. Diekhans, D. Earl, J. St. John, J. Ma, B. Suh, and D. Haussler, Cactus graphs for genome comparisons, J. Comput. Biol. 18 (2011), no. 3, 469-481. https://doi.org/10.1089/cmb.2010.0252
  18. D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 2001.
  19. R. Xing, B. Zhou, and F. Dong, On atom-bond connectivity index of connected graphs, Discrete Appl. Math. 159 (2011), no. 15, 1617-1630. https://doi.org/10.1016/j.dam.2011.06.004
  20. R. Xing, B. Zhou, and Z. Du, Further results on atom-bond connectivity index of trees, Discrete Appl. Math. 158 (2010), no. 14, 1536-1545. https://doi.org/10.1016/j.dam.2010.05.015

Cited by

  1. The first multiplication atom-bond connectivity index of molecular structures in drugs vol.25, pp.4, 2017, https://doi.org/10.1016/j.jsps.2017.04.021