Communications for Statistical Applications and Methods
- Volume 22 Issue 4
- /
- Pages.361-375
- /
- 2015
- /
- 2287-7843(pISSN)
- /
- 2383-4757(eISSN)
DOI QR Code
Tests Based on Skewness and Kurtosis for Multivariate Normality
- Kim, Namhyun (Department of Science, Hongik University)
- Received : 2015.04.25
- Accepted : 2015.06.09
- Published : 2015.07.31
Abstract
A measure of skewness and kurtosis is proposed to test multivariate normality. It is based on an empirical standardization using the scaled residuals of the observations. First, we consider the statistics that take the skewness or the kurtosis for each coordinate of the scaled residuals. The null distributions of the statistics converge very slowly to the asymptotic distributions; therefore, we apply a transformation of the skewness or the kurtosis to univariate normality for each coordinate. Size and power are investigated through simulation; consequently, the null distributions of the statistics from the transformed ones are quite well approximated to asymptotic distributions. A simulation study also shows that the combined statistics of skewness and kurtosis have moderate sensitivity of all alternatives under study, and they might be candidates for an omnibus test.
File
Acknowledgement
Supported by : Hongik University
References
- Anscombe, F. J. and Glynn, W. J. (1983). Distribution of the kurtosis statistic b2 for normal samples, Biometrika, 70, 227-234.
- Baringhaus, L. and Henze, N. (1992). Limit distributions for Mardia's measure of multivariate skewness, Annals of Statistics, 20, 1889-1902. https://doi.org/10.1214/aos/1176348894
-
Bowman, K. O. and Shenton, L. R. (1975). Omnibus test contours for departures from normality based on
${\sqrt{b_1}}$ and$b_2$ , Biometrika, 62, 243-250. -
Bowman, K. O. and Shenton, L. R. (1986). Moment
${\sqrt{b_1}},{b_2}$ Techniques, In R. B. D'Agostino and M. A. Stephens (Eds.), Goodness-of-Fit Techniques, Marcel Dekker, New York, 279-329. -
D'Agostino, R. B. (1970). Transformation to normality of the null distribution of
$g_1$ , Biometrika, 57, 679-681. - D'Agostino, R. B. (1986). Tests for the normal distribution. In R. B. D'Agostino and M. A. Stephens (Eds.), Goodness-of-Fit Techniques, Marcel Dekker, New York, 367-420.
-
D'Agostino, R. B. and Pearson, E. S. (1973). Tests for departure from normality: Empirical results for the distributions of
$b_2$ and${\sqrt{b_1}}$ , Biometrika, 60, 613-622. -
D'Agostino, R. B. and Pearson, E. S. (1974). Correction and amendment: Tests for departure from normality: Empirical results for the distributions of
$b_2$ and${\sqrt{b_1}}$ , Biometrika, 61, 647. - De Wet, T. and Venter, J. H. (1972). Asymptotic distributions of certain test criteria of normality, South African Statistical Journal, 6, 135-149.
- Farrell, P. J., Salibian-Barrera, M. and Naczk, K. (2007). On tests for multivariate normality and associated simulation studies, Journal of Statistical Computation and Simulation, 77, 1065-1080. https://doi.org/10.1080/10629360600878449
- Fattorini, L. (1986). Remarks on the use of the Shapiro-Wilk statistic for testing multivariate normality, Statistica, 46, 209-217.
- Henze, N. (1994). On Mardia's kurtosis for multivariate normality, Communications in Statistics-Theory and Methods, 23, 1031-1045. https://doi.org/10.1080/03610929408831303
- Henze, N. (2002). Invariant tests for multivariate normality: A critical review, Statistical Papers, 43, 467-506. https://doi.org/10.1007/s00362-002-0119-6
- Henze, N. and Zirkler, B. (1990). A class of invariant consistent tests for multivariate normality, Communications in Statistics-Theory and Methods, 19, 3539-3617. https://doi.org/10.1080/03610929008830396
- Horswell, R. L. and Looney, S. W. (1992). A comparison of tests for multivariate normality that are based on measures of multivariate skewness and kurtosis, Journal of Statistical Computation and Simulation, 42, 21-38. https://doi.org/10.1080/00949659208811407
- Kendall, M. and Stuart, A. (1977). The Advanced Theory of Statistics, Vol. I, MacMillan Publishing Co., New York.
- Kim, N. (2004a). An approximate Shapiro-Wilk statistic for testing multivariate normality, The Korean Journal of Applied Statistics, 17, 35-47. https://doi.org/10.5351/KJAS.2004.17.1.035
- Kim, N. (2004b). Remarks on the use of multivariate skewness and kurtosis for testing multivariate normality, The Korean Journal of Applied Statistics, 17, 507-518. https://doi.org/10.5351/KJAS.2004.17.3.507
- Kim, N. (2005). The limit distribution of an invariant test statistic for multivariate normality, The Korean Communications in Statistics, 12, 71-86. https://doi.org/10.5351/CKSS.2005.12.1.071
- Kim, N. and Bickel, P. J. (2003). The limit distribution of a test statistic for bivariate normality, Statistica Sinica, 13, 327-349.
- Malkovich, J. F. and Afifi, A. A. (1973). On tests for multivariate normality, Journal of the American Statistical Association, 68, 176-179. https://doi.org/10.1080/01621459.1973.10481358
- Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications, Biometrika, 57, 519-530. https://doi.org/10.1093/biomet/57.3.519
- Mardia, K. V. (1974). Applications of some measures of multivariate skewness and kurtosis for testing normality and robustness studies, Sankhya: The Indian Journal of Statistics Series B, 36, 115-128.
-
Mardia, K. V. (1975). Assessment of multinormality and the robustness of Hotelling's
$T^2$ test, Applied Statistics, 24, 163-171. https://doi.org/10.2307/2346563 - Mecklin, C. J. and Mundfrom, D. J. (2005). A Monte Carlo comparison of the Type I and Type II error rates of tests of multivariate normality, Journal of Statistical Computation and Simulation, 75, 93-107. https://doi.org/10.1080/0094965042000193233
- Mudholkar, G. S., Srivastava, D. K. and Lin, C. T. (1995). Some p-variate adaptations of the Shapiro- Wilk test of normality, Communications of Statistics-Theory and Methods, 24, 953-985. https://doi.org/10.1080/03610929508831533
- Pearson, E. S. (1956). Some aspects of the geometry of statistics, Journal of the Royal Statistical Society Series A (General), 119, 125-146. https://doi.org/10.2307/2342880
- Pearson, E. S., D'Agostino, R. B. and Bowman, K. O. (1977). Tests for departure from normality: Comparison of powers, Biometrika, 64, 231-246. https://doi.org/10.1093/biomet/64.2.231
- Rao, C. R. (1948). Test of significance in multivariate analysis, Biometrika, 35, 58-79. https://doi.org/10.1093/biomet/35.1-2.58
- Romeu, J. L. and Ozturk, A. (1993). A comparative study of goodness-of-fit tests for multivariate normality, Journal of Multivariate Analysis, 46, 309-334. https://doi.org/10.1006/jmva.1993.1063
- Roy, S. N. (1953). On a heuristic method of test construction and its use in multivariate analysis, Annals of Mathematical Statistics, 24, 220-238. https://doi.org/10.1214/aoms/1177729029
- Royston, J. P. (1983). Some techniques for accessing multivariate normality based on the Shapiro-Wilk W, Applied Statistics, 32, 121-133. https://doi.org/10.2307/2347291
- Shapiro, S. S. and Francia, R. S. (1972). An approximate analysis of variance test for normality, Journal of the American Statistical Association, 67, 215-216. https://doi.org/10.1080/01621459.1972.10481232
- Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples), Biometrika, 52, 591-611. https://doi.org/10.1093/biomet/52.3-4.591
- Srivastava, D. K. and Mudholkar, G. S. (2003). Goodness of fit tests for univariate and multivariate normal models, Handbook of Statistics, 22, 869-906. https://doi.org/10.1016/S0169-7161(03)22026-5
- Srivastava, M. S. (1984). A measure of skewness and kurtosis and a graphical method for assessing multivariate normality, Statistics & Probability Letters, 2, 263-267. https://doi.org/10.1016/0167-7152(84)90062-2
- Srivastava, M. S. and Hui, T. K. (1987). On assessing multivariate normality based on Shapiro-Wilk W statistic, Statistics & Probability Letters, 5, 15-18. https://doi.org/10.1016/0167-7152(87)90019-8
- Thode, H. C. (2002). Testing for Normality, Marcel Dekker, New York.
- Villasenor Alva, J. A. and Gonzalez Estrada, E. (2009). A generalization of Shapiro-Wilk's test for multivariate normality, Communications in Statistics-Theory and Methods, 38, 1870-1833. https://doi.org/10.1080/03610920802474465