DOI QR코드

DOI QR Code

ON SOME SUBGROUPS OF D* WHICH SATISFY A GENERALIZED GROUP IDENTITY

  • BIEN, MAI HOANG
  • Received : 2014.10.14
  • Published : 2015.07.31

Abstract

Let D be a division ring and w($x_1,\;x_2,\;{\ldots},\;x_m$) be a generalized group monomial over $D^*$. In this paper, we investigate subnormal subgroups and maximal subgroups of $D^*$ which satisfy the identity $w(x_1,\;x_2,\;{\ldots},\;x_m)=1$.

Keywords

division ring;subnormal subgroup;maximal subgroup;generalized group identity;group identity

References

  1. S. Akbari, R. Ebrahimian, H. M. Kermani, and A. S. Golsefidy, Maximal subgroups of $GL_n(D)$, J. Algebra 259 (2003), no. 1, 201-225. https://doi.org/10.1016/S0021-8693(02)00549-5
  2. S. A. Amitsur, Rational identities and applications to algebra and geometry, J. Algebra 3 (1966), 304-359. https://doi.org/10.1016/0021-8693(66)90004-4
  3. K. I. Beidar, W. S. Martindale 3rd, and A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, Inc., New York-Basel-Hong Kong, 1996.
  4. M. H. Bien and D. H. Dung, On normal subgroups of division rings which are radical over a proper division subring, Studia Sci. Math. Hungar. 49 (2014), no. 2, 231-242.
  5. M. A. Chebotar and P.-H. Lee, A note on group identities in division rings, Proc. Edinb. Math. Soc. 47 (2004), no. 3, 557-560. https://doi.org/10.1017/S0013091503000804
  6. T. T. Deo, M. H. Bien, and B. X. Hai, On the radicality of maximal subgroups in $GL_n(D)$, J. Algebra 365 (2012), 42-49. https://doi.org/10.1016/j.jalgebra.2012.04.027
  7. H. R. Dorbidi, R. Fallah-Moghaddam, and M. Mahdavi-Hezavehi, Soluble maximal subgroups in $GL_n(D)$, J. Algebra Appl. 10 (2011), no. 6, 1371-1382. https://doi.org/10.1142/S0219498811005233
  8. R. Fallah-Moghaddam and M. Mahdavi-Hezavehi, Locally finite conditions on maximal subgroups of $GL_n(D)$, Algebra Colloq. 19 (2012), no. 1, 73-86. https://doi.org/10.1142/S1005386712000053
  9. I. Z. Golubchik and A. V. Mikhalev, Generalized group identities in classical groups, Zap. Nauchn. Sem. Leningrad. Otdel. Inst. Steklov. 114 (1982), 96-119.
  10. J. Z. Goncalves and A. Mandel, Are there free groups in division rings?, Israel J. Math. 55 (1986), no. 1, 69-80.
  11. I. N. Herstein, Multiplicative commutators in division rings, Israel J. Math. 31 (1978), no. 2, 180-188. https://doi.org/10.1007/BF02760549
  12. D. Kiani and M. Mahdavi-Hezavehi, Identities on maximal subgroups of $GL_n(D)$, Algebra Colloq. 12 (2005), no. 3, 461-470. https://doi.org/10.1142/S1005386705000428
  13. T. Y. Lam, A First Course in Noncommutative Rings, in: Grad. Texts in Math., Vol. 131, Springer-Verlag, Berlin, 1991.
  14. M. Ramezan-Nassab and D. Kiani, Some skew linear groups with Engel's condition, J. Group Theory 15 (2012), no. 4, 529-541.
  15. L. H. Rowen, Polynomial Identities in Ring Theory, Academic Press, Inc., New York, 1980.
  16. W. R. Scott, Group Theory, Dover Publications Inc., New York, second edition, 1987.
  17. G. M. Tomanov, Generalized group identities in linear groups, Dokl. Akad. Nauk BSSR 26 (1982), no. 1, 9-12.

Cited by

  1. Subnormal subgroups in division rings with generalized power central group identities vol.106, pp.4, 2016, https://doi.org/10.1007/s00013-016-0886-2

Acknowledgement

Supported by : Vietnam National Foundation for Science and Technology Development (NAFOSTED)