DOI QR코드

DOI QR Code

Domain Decomposition Approach Applied for Two- and Three-dimensional Problems via Direct Solution Methodology

  • Kwak, Jun Young ;
  • Cho, Haeseong ;
  • Chun, Tae Young ;
  • Shin, SangJoon ;
  • Bauchau, Olivier A.
  • Received : 2015.02.16
  • Accepted : 2015.05.11
  • Published : 2015.06.30

Abstract

This paper presents an all-direct domain decomposition approach for large-scale structural analysis. The proposed approach achieves computational robustness and efficiency by enforcing the compatibility of the displacement field across the sub-domain boundaries via local Lagrange multipliers and augmented Lagrangian formulation (ALF). The proposed domain decomposition approach was compared to the existing FETI approach in terms of the computational time and memory usage. The parallel implementation of the proposed algorithm was described in detail. Finally, a preliminary validation was attempted for the proposed approach, and the numerical results of two- and three-dimensional problems were compared to those obtained through a dual-primal FETI approach. The results indicate an improvement in the performance as a result of the implementing the proposed approach.

Keywords

Finite Element Tearing and Interconnecting (FETI);Augmented Lagrangian Formulation;Domain Decomposition Method;Lagrange multipliers;Parallel computing

References

  1. O.A. Bauchau, A. Epple, and C.L. Bottasso. Scaling of constraints and augmented Lagrangian formulations in multibody dynamics simulations. Journal of Computational and Nonlinear Dynamics, Vol. 4, No. 2, 2009, pp. 1-9.
  2. Saad, Y. and Schultz, M. H., "GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems" SIAM Journal on Scientific and Statistical Computing, Vol. 7, No. 3, 1986, pp. 856-869. https://doi.org/10.1137/0907058
  3. Farhat, C. and Roux, F.-X., "A method of finite element tearing and interconnecting and its parallel solution algorithm." International Journal for Numerical Methods in Engineering, Vol. 32, 1991, pp. 1205-1227. https://doi.org/10.1002/nme.1620320604
  4. Farhat, C., Chen, P. S. Mandel, J. and Roux, F.-X., "The two-level FETI method for static and dynamic plate problems. Part I an optimal iterative solver for biharmonic systems." Computer Methods and Applied Mechanics and Engineering, Vol. 155, 1998, pp. 129-151. https://doi.org/10.1016/S0045-7825(97)00146-1
  5. Farhat, C., Chen, P. S. Mandel, J. and Roux, F.-X., "The two-level FETI method. Part II extension to shell problems, parallel implementation and performance results." Computer Methods and Applied Mechanics and Engineering, Vol. 155, 1998, pp. 153-179. https://doi.org/10.1016/S0045-7825(97)00145-X
  6. Farhat, C., Chen, P. S. and Roux, F.-X., "The dual schur complement method with well-posed local neumann problems: Regulariztion with a perturbed lagrangian formulation." SIAM Journal on Scientific Computing, Vol. 14, No. 3, 1993, pp. 752-759. https://doi.org/10.1137/0914047
  7. Dostal, R. Z., Friedlander, A. and Santos, S. A., "Solution of coercive and semicoercive contact problems by FETI domain decomposition." Contemporary Mathematics, Vol. 218, 1998.
  8. Farhat, C., Lesoinne, M., and Pierson, K., "A scalable dual-primal domain decomposition method." Numerical Linear Algebra with Applications, Vol. 7, 2000, pp. 687-714. https://doi.org/10.1002/1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-S
  9. Farhat, C., M. Lesoinne, P. Tallec, L., Pierson, K. and Rixen, D., "FETI-DP: a dual-primal unified FETI method - Part I: A faster alternative to the two-level FETI method." International Journal for Numerical Methods in Engineering, Vol. 50, 2001, pp. 1523-1544. https://doi.org/10.1002/nme.76
  10. Hackbusch, R. W., Khoromskij, B. N. and Kriemann, R., "Direct Schur complement method by domain decomposition based on H-matrix approximation." Computing and Visualization in Science, Vol. 8, 2005, pp. 179-188. https://doi.org/10.1007/s00791-005-0008-3
  11. Li, R. K., "Fast and highly scalable parallel computations for fundamental matrix problems on distributed memory systems." The Journal of Supercomputing, Vol. 54, 2010, pp. 271-297. https://doi.org/10.1007/s11227-009-0319-0
  12. Park K. C. and Felippa C. A., "A variational framework for solution method developments in structural mechanics." Journal of Applied Mechanics, Vol. 65, 1998, pp. 242-249. https://doi.org/10.1115/1.2789032
  13. Park K. C., Felippa C. A. and Gumaste U.A., "A localized version of the method of Lagrange multipliers and its applications." Computational Mechanics, Vol. 24, 2000, pp. 476-490. https://doi.org/10.1007/s004660050007
  14. Fortin M. and Glowinski R., "Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary- Value Problems." North-Holland, Amsterdam, the Netherlands, 1983.
  15. Gill P. E., Murray W., Saunders M. A. and Wright M. H., "Sequential quadratic programming methods for nonlinear programming." In E.J. Haug, editor, Computer-Aided Analysis and Optimization of Mechanical System Dynamics, Springer-Verlag, Berlin, Heidelberg, 1984, pp. 679-697.
  16. Bayo E., Garcia de Jalon J. and Serna M. A., "A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems." Computer Methods in Applied Mechanics and Engineering, Vol. 71, 1998, pp. 183-195.
  17. Bayo E., Garcia de Jalon J., Avello A. and Cuadrado J., "An efficient computational method for real time multibody dynamic simulation in fully Cartesian coordinates." Computer Methods in Applied Mechanics and Engineering, Vol. 92, 1991, pp. 377-395. https://doi.org/10.1016/0045-7825(91)90023-Y
  18. Bayo E. and Ledesma R., "Augmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamics." Nonlinear Dynamics, Vol. 9, 1996, pp. 113-130. https://doi.org/10.1007/BF01833296
  19. Bottasso C.L., Bauchau O.A. and Cardona A., "Timestep-size-independent conditioning and sensitivity to perturbations in the numerical solution of index three differential algebraic equations." SIAM Journal on Scientific Computing, Vol. 29, No. 1, 2007, pp. 397-414. https://doi.org/10.1137/050638503
  20. Linear Algebra PACKage (LAPACK). http://www.netlib.org/lapack, 2014.
  21. Scalable Linear Algebra PACKage (ScaLAPACK). http://www.netlib.org/scalapack, 2014.
  22. Kwak , J. Y., Chun, T. Y., Shin, S. J. and Bauchau, O.A., "Domain decomposition approach to flexible multibody dynamics simulation." Computational Mechanics, Vol. 53, 2014, pp. 147-158. https://doi.org/10.1007/s00466-013-0898-8
  23. Tong P. and Pian T. H. H., "A hybid-element approach to crack problems in plane elasticity." International Journal for Numerical Methods in Engineering, Vol. 7, 1973, pp. 297-308. https://doi.org/10.1002/nme.1620070307
  24. Bathe, K. J., Finite Element Procedures, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1996..
  25. Irons, B. M., "A frontal solution program for finite element analysis." International Journal for Numerical Methods in Engineering, Vol. 2, 1970, pp. 5-32. https://doi.org/10.1002/nme.1620020104
  26. Duff, I. S. and Reid, J. K., "The multifrontal solution of indefinite sparse symmetric linear equations." ACM Transactions on Mathematical Software, Vol. 9, No. 3, 1973, pp. 302-325.
  27. Kim, J. H. and Kim, S. J., "Multifrontal solver combined with graph partitioners." AIAA Journal, Vol. 37, No. 8, 1999, pp. 964-970. https://doi.org/10.2514/2.817
  28. Gould, N. I. H. and Scott, J. A., "A Numerical Evaluation of Sparse Direct Solvers for the Solution of Large Sparse Symmetric Linear Systems of Equations." ACM Transactions on Mathematical, Vol. 33, No. 2, 2007, pp. 10. https://doi.org/10.1145/1236463.1236465
  29. O.A. Bauchau. "Parallel computation approaches for flexible multibody dynamics simulations", Journal of the Franklin Institute, Vol. 347, No. 1, February 2010, pp. 53-68. https://doi.org/10.1016/j.jfranklin.2009.10.001
  30. Kwak J. Y., Cho H. S., Shin S. J. and Bauchau O. A., "Development of finite element domain decomposition method using local and mixed Lagrange multipliers." Journal of the Computational Structural Engineering Institute of Korea, Vol. 25, No. 6, 2012, pp. 469-476. https://doi.org/10.7734/COSEIK.2012.25.6.469
  31. Tak M. and Park T., "High scalable non-overlapping domain decomposition method using a direct method for finite element analysis." Computer Methods in Applied Mechanics and Engineering, Vol. 264, 2013, pp. 108-128. https://doi.org/10.1016/j.cma.2013.05.013
  32. O. Schenk, and K. Gartner. PARDISO User Guide Verson 5.0.0., 2014.
  33. Schenk , O., Gartner, K. and Fichtner, W., "Efficient Sparse LU Factorization with Left-Rghit Looking Strategy on Shared Memory Multiprocessors." BIT Numerical Mathematics, Vol. 40, No. 1, 1999, pp. 158-176.
  34. Ahmad S., Irons B. H. and Zienkiewicz, O. C., "Analysis of thick and thin shell structures by curved finite elements." International Journal for Numerical Methods in Engineering, Vol. 2, 1970, pp. 419-451. https://doi.org/10.1002/nme.1620020310
  35. Ashwell D.G. and Gallagher R.H., Finite Elements for Thin Shells and Curved Members. JohnWiley & Sons, New York, 1976.
  36. Ugural A.C., Stresses in Plates and Shells. McGraw-Hill Book Company, New-York, second edition, 1999.
  37. Intel Math Kernel Library (Intel MKL) 11.0. http://software.intel.com/en-us/intel-mkl, 2014.
  38. Gueye, I., Arem S. E., Feyel F., Roux R.X. and Gailletaud G., "A new parallel sparse direct solver: Presentation and numerical experiments in large-scale structural mechanics parallel computing." International Journal for Numerical Methods in Engineering, Vol. 88, 2011, pp. 370-384. https://doi.org/10.1002/nme.3179

Cited by

  1. Computational Algorithm for Nonlinear Large-scale/Multibody Structural Analysis Based on Co-rotational Formulation with FETI-local Method vol.44, pp.9, 2016, https://doi.org/10.5139/JKSAS.2016.44.9.775
  2. Effects of Turbulent Dispersion on Water Droplet Impingement Based on Statistics Method vol.19, pp.2, 2018, https://doi.org/10.1007/s42405-018-0040-4

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP), National Research Foundation of Korea (NRF)