DOI QR코드

DOI QR Code

Power output and efficiency of a negative capacitance and inductance shunt for structural vibration control under broadband excitation

  • Qureshi, Ehtesham Mustafa ;
  • Shen, Xing ;
  • Chang, Lulu
  • Received : 2015.01.08
  • Accepted : 2015.06.11
  • Published : 2015.06.30

Abstract

Structural vibration control using a piezoelectric shunt is an established control technique. This technique involves connecting a piezoelectric patch, which is bonded onto or embedded into the vibrating structure, to an electric shunt circuit. Thus, vibration energy is converted into electrical energy and is dissipated through a network of electrical components. Different configurations of shunt have been researched, among which the negative capacitance-inductance shunt has gained prominence recently. It is basically an analog, active circuit consisting of operational amplifiers and passive elements to introduce real and imaginary impedance on the vibrating structure. The present study attempts to model the behavior of a negative capacitance-inductance shunt in terms of power output and efficiency using circuit modeling software. The shunt model is validated experimentally and is used to control the structural vibration of an aluminum beam, connected to a pair of piezoelectric patches, under broadband excitation. The model is also used to determine the optimal parameters of a negative capacitance-inductance shunt to increase the efficiency and predict the voltage output limit of op-amp against the supply voltage.

Keywords

Piezoelectric;Vibration;Control;Damping;Shunt;Circuit

References

  1. Hopkins, M.A., Henderson, D.A., Moses, R.W., Ryall, T., Zimcik, D.G. and Spangler, R.L., "Active vibration suppression systems applied to twin-tail buffering", Proc. SPIE Smart Structures and Materials: Industrial and Commercial Application of Smart Structures Technologies, Vol. 3326, 1998, pp.27-33. DOI:10.1117/12.310663.
  2. Simpson, J. and Schweiger, J., "Industrial approach to piezoelectric damping of large fighter aircraft components", Proc. SPIE Smart Structures and Materials: Industrial and Commercial Application of Smart Structures Technologies, Vol. 3326, 1998, pp. 34-46. DOI:10.1117/12.310669.
  3. Kim, S., Han, C. and Yun, C., "Improvement of aeroelastic stability of hingeless helicopter rotor blade by passive piezoelectric damping", Proc. SPIE Smart Structures and Materials: Passive Damping and Isolation, Vol. 3672, 1999, pp. 131-141. DOI:10.1117/12.349776.
  4. Wu, S., Turner, T.L. and Rizzi, S.A., "Piezoelectric shunt vibration damping of an F-15 panel under high-acoustic excitation", Proc. SPIE Smart Structures and Materials: Damping and Isolation, Vol. 3989, 2000, pp. 276-287. DOI:10.1117/12.384568.
  5. Sheta, E.F. and Moses, R.W., "Active smart material control system for buffet alleviation", Journal of Sound and Vibration", Vol. 292, No. 3-5, 2006, pp.854-868. DOI:10.1016/j.jsv.2005.09.002. https://doi.org/10.1016/j.jsv.2005.09.002
  6. Davis, C.L. and Lesieutre, G.A., "A modal strain energy approach to the prediction of resistivity shunted piezoceramic damping", Journal of Sound and Vibration, Vol. 184, No. 1, 1995, pp. 129-139. DOI: 10.1006/jsvi.1995.0308. https://doi.org/10.1006/jsvi.1995.0308
  7. Wu, S-Y., "Broadband piezoelectric shunts for passive structural vibration control", Proc. SPIE 4331, Smart Structures and Materials 2001: Damping and Isolation, July 2, 2001, pp. 251-261. DOI: 10.1117/12.432708. https://doi.org/10.1117/12.432708
  8. Behrens, S., Fleming, A.J. and Moheimani, S.O.R., "New method for multiple-mode shunt damping of structural vibration using a single piezoelectric transducer", SPIE-Smart Structures and Materials 2001 (Newport Beach, CA), July 2, 2001, pp. 239-250. DOI: 10.1117/12.432707.
  9. Wu, S-Y., "Broadband piezoelectric shunt for structural vibration control', US Patent 6,075,303, 2000.
  10. Behrens, S., Fleming, A.J. and Moheimani, S.O.R., "A broadband controller for shunt piezoelectric damping of structural vibration", Smart Materials and Structures, Vol. 12, 2003, pp. 18-28. DOI: 10.1088/0964-1726/12/1/303. https://doi.org/10.1088/0964-1726/12/1/303
  11. Wu, S.Y., "Piezoelectric shunts with a parallel R-L circuit for structural damping and vibration control", In Proc. SPIE Symp. Smart Structures Materials Passive Damping Isolation, May 1, Vol. 2720, 1996, pp. 259-269. DOI:10.1117/12.239093.
  12. Hollkamp, J.J. and Gordon, R.W., "An experimental comparison of piezoelectric and constrained layer damping", Smart Materials and Structures, Vol. 5, 1996, pp. 715-722. DOI:10.1088/0964-1726/5/5/019. https://doi.org/10.1088/0964-1726/5/5/019
  13. Caruso, G., "A critical analysis of electric shunt circuits employed in piezoelectric passive vibration damping", Smart Materials and Structures, Vol. 10, 2001, pp. 1059-1068. DOI:10.1088/0964-1726/10/5/322. https://doi.org/10.1088/0964-1726/10/5/322
  14. Spadoni, A., Ruzzene, M. and Cunefare, K., "Vibration and wave propagation control of plates with periodic arrays of shunted piezoelectric patches", Journal of Intelligent Material Systems and Structures, Vol. 20, No. 8, 2009, pp.979-990. DOI:10.1177/1045389X08100041. https://doi.org/10.1177/1045389X08100041
  15. Hollkamp, J.J., "Multimodal passive vibration suppression with piezoelectric materials and resonant shunts", Journal of Intelligent Material Systems and Structures, Vol. 5, No. 1, 1994, pp. 49-56. DOI:10.1177/1045389X940050010-6. https://doi.org/10.1177/1045389X9400500106
  16. Wu, S-Y., "Method for multiple mode piezoelectric shunting with single PZT transducer for vibration control", Journal of Intelligent Material Systems and Structures, Vol. 9, 1998, pp. 991-998. DOI:10.1177/1045389X980090120-4. https://doi.org/10.1177/1045389X9800901204
  17. Behrens, S., Moheimani, S.O.R. and Fleming, A.J., "Multiple mode current flowing passive piezoelectric shunt controller", Journal of Sound and Vibration, Vol. 266, No. 5, 2003, pp. 929-942. DOI:10.1016/S0022-460X(02)0138-0-9. https://doi.org/10.1016/S0022-460X(02)01380-9
  18. Niederberger, D., Fleming, A.J., Moheimani, S.O.R. and Morari, M., "Adaptive multi-mode resonant piezoelectric shunt damping", Smart Materials and Structures, Vol. 13, No. 5, 2004, pp. 1025-1035. DOI: 10.1088/0964-1726/13/5/007. https://doi.org/10.1088/0964-1726/13/5/007
  19. dell'Isola, F., Maurini, C. and Porfiri, M., "Passive damping of beam vibrations through distributed electric networks and piezoelectric transducers: prototype design and experimental validation", Smart Materials and Structures, Vol. 13, No. 2, 2004, pp. 299-308. DOI:10.1088/0964-1726/13/2/008. https://doi.org/10.1088/0964-1726/13/2/008
  20. Park, C.H. and Baz, A., "Vibration control of beams with negative capacitive shunting of interdigital electrode piezoceramics", Journal of Vibration and Control, Vol. 11, 2005, pp. 331-346. DOI: 10.1177/107754605040949. https://doi.org/10.1177/107754605040949
  21. Forward, R.L., "Electronic damping of vibrations in optical structures", Applied Optics, Vol. 18, No. 5, 1979, pp. 690-697. DOI:10.1364/AO.18.000690. https://doi.org/10.1364/AO.18.000690
  22. Hagood, N.W. and von Flotow, A., "Damping of structural vibrations with piezoelectric materials and passive electrical networks", Journal of Sound and Vibration, Vol. 146, No. 2, 1991, pp. 243-268. DOI:10.1016/0022-460X(91)90762-9. https://doi.org/10.1016/0022-460X(91)90762-9
  23. Qureshi, E.M., Shen , X. and Chen J.J., "Vibration control laws via shunted piezoelectric transducers: A review", International Journal of Aeronautical and Space Sciences, Vol. 15, No. 1, 2014, pp. 1-19. DOI:10.5139/IJASS.2014.15.1.1. https://doi.org/10.5139/IJASS.2014.15.1.1
  24. Bisegna, P., "On the use of negative capacitances for vibration damping of piezoactuated structures", Proc. SPIE 5760, Smart Structures and Materials 2005: Damping and Isolation, 16 May, 2005, pp. 317-328. DOI:10.1117/12.600885. https://doi.org/10.1117/12.600885
  25. De Marneffe, B. and Preumont, A., "Vibration damping with negative capacitance shunts: theory and experiment", Smart Materials and Structures, Vol. 17, No. 3, 2008, pp. 035015. DOI:10.1088/0964-1726/17/3/0350-15. https://doi.org/10.1088/0964-1726/17/3/035015
  26. Beck, B.S., Cunefare, K.A. and Manuel, C., "The power output and efficiency of a negative capacitance shunt for vibration control of a flexural system", Smart Materials and Structures, Vol. 22, No. 6, 2013, pp. 065009. DOI:10.1088/0964-1726/22/6/0650-09. https://doi.org/10.1088/0964-1726/22/6/065009
  27. Horowitz, P. and Hill, W., The Art of Electronics, Cambridge University Press, New York, 1996.
  28. Riodan, R.H.S., "Simulated inductors using differential amplifiers", Electronic Letter, Vol. 3, No. 2, 1967, pp. 50-51. DOI:10.1049/el:19670039 https://doi.org/10.1049/el:19670039
  29. Cunefare, K.A., "Negative capacitance shunts for vibration suppression: wave based tuning and reactive input power", Active (Adelaide), 2006.
  30. Beck, B., Cunefare, K.A., and Ruzzene, M., "Broadband vibration suppression assessment of negative impedance shunts", SMASIS08 (Ellicott City, MD), 2008.
  31. Tang, J. and Wang, K.W., "Active-passive hybrid piezoelectric networks for vibration control: Comparisons and improvement", Smart Materials and Structures, Vol. 10, No. 4, 2001, pp. 794-806. DOI:10.1088/0964-1726/10/4/325. https://doi.org/10.1088/0964-1726/10/4/325

Cited by

  1. Shunt Damping Vibration Control Technology: A Review vol.7, pp.5, 2017, https://doi.org/10.3390/app7050494