DOI QR코드

DOI QR Code

커피 볶음 정도에 따른 생화학적 성분 및 생리활성의 변화

Changes of biochemical components and physiological activities of coffee beans according to different roasting conditions

  • 남상해 (경남과학기술대학교 식품과학부) ;
  • 강수지 (경남과학기술대학교 식품과학부)
  • Nam, Sanghae (Division of Food Science, Gyeongnam National University of Science and Technology) ;
  • Kang, Suji (Division of Food Science, Gyeongnam National University of Science and Technology)
  • 투고 : 2015.01.06
  • 심사 : 2015.03.11
  • 발행 : 2015.04.30

초록

4종류의 커피 원두(CS, Colombia superimo; EY, Ethiopia yirgacheffee; IM, Indonesia mandheling; IMM, India monsooned malabar AA)를 생두(raw coffee bean)와 각각 다른 온도(200, $250^{\circ}C$)와 시간(10, 15, 20 min)으로 로스팅하였으며, 최적의 로스팅 조건을 찾기 위하여 로스팅 중에 변화되는 pyrazine을 비롯한 몇 가지 성분과 항산화, 항당뇨 효과를 조사하였다. Caffeine 함량은 로스팅 정도에 따라 크게 차이를 보이지 않았으나, 5-caffeoylquinic acid와 total phenolic compounds는 대체로 로스팅이 강해질수록 크게 감소하였다. Pyrazine 화합물은 IMM에서 가장 많이 생성되었으며, $250^{\circ}C$에서는 시간이 경과할수록 급격히 줄어들었다. DPPH 라디칼 소거활성은 같은 처리농도에서의 BHT와 ${\alpha}$-tocopherol의 활성에 비하여 대부분 80% 이상의 효과를 나타내었다. 한편 FRAP assay에서는 로스팅 정도가 강해질수록 활성이 약간 감소하였다. ${\alpha}$-Glucosidase 저해활성은 유의할 만한 수준이었으나, $250^{\circ}C$에서 20분 roasting할 경우에는 활성이 80% 이상 줄어들었으며, ${\alpha}$-amylase 저해활성도 유사한 경향이었다. 이러한 결과로 로스팅 정도에 따른 생리활성과 커피의 고소한 향과 초콜릿 향을 내는 pyrazine 화합물의 생성을 종합적으로 보았을 때, $200^{\circ}C$에서 15분정도 로스팅하는 것이 가장 최적의 조건인 것으로 판단하였다. 따라서 이러한 결과는 커피산업에서 로스팅 조건을 달리한 원두커피의 향과 생리활성이 높은 커피를 생산하는데 활용될 수 있을 것이라 기대된다.

과제정보

연구 과제 주관 기관 : 경남과학기술대학교

참고문헌

  1. Kim HK, Hwang SY, Yoon SB, Chun DS, Kong SK, Kang KO (2007) A study of the characteristics of different coffee beans by roasting and extracting condition. Korean J Food Nutr, 20, 14-19
  2. Lee MJ, Kim SE, Kim JH, Lee SW, Yeum DM (2013) A study of coffee bean characteristics and coffee flavor in relation to roasting. Korean J Food Nutr, 42, 255-261 https://doi.org/10.3746/jkfn.2013.42.2.255
  3. Moon JW, Cho JS (1999) Change in flavor characteristics and shelf-life of roasted coffee in different packaging conditions during storage. Korean J Food Sci Technol, 31, 441-447
  4. Baik HJ, Ko YS (1996) Studies on the aroma components of roasted and ground coffee. Korean J Food Sci Technol, 28, 15-18
  5. Kim JY, Han YS (2009) Influence of roasting time on antibacterial and antioxidative effects of coffee extract. Korean J Food Sci Technol, 25, 496-505
  6. Hwang SH, Kim KS, Kang HJ, Kim MJ (2013) Phenolic compound contents and antioxidative effects on dutch coffee by extraction time. Korean J Public Health Research, 39, 21-29
  7. Park JY (2013) Antioxidant activities and quality characteristics of pan bread with green coffee bean powder. MS Thesis. Sejong University, Korea, p 26-42
  8. Park SS, Lee DH, Kim KI (2012) A study on the quality of roast coffee bean according to methods of storage. Korean J Soc Coffee Industry, 1, 31-36
  9. Suh YS, Lee SH, Shang Y, Yoon JR, Lee WJ (2014) Change in antioxidant activities and flavor patterns of Coffea arabica beans during roasting. Korean J Food Preserv, 21, 224-230 https://doi.org/10.11002/kjfp.2014.21.2.224
  10. Kim KH, Kim AH, Lee JK, Chun MS, Noh BS (2014) Analysis of flavor pattern of various coffee beans using electronic nose. Korean J Food Sci Technol, 46, 1-6 https://doi.org/10.9721/KJFST.2014.46.1.1
  11. Choi YM, Yoon HH (2011) Sensory characteristics of espresso coffee according to green coffee processing. Korean J Food Cookery Sci, 27, 773-781 https://doi.org/10.9724/kfcs.2011.27.6.773
  12. Kim KJ, Park SK (2006) Changes in major chemical constituents of green coffee beans during the roasting. Korean J Food Sci Technol, 38, 153-158
  13. Holscher W. (1996) Comparison of some aroma impact compounds in roasted coffee and coffee surrogates. R. Soc. Chem, 197, 239-244
  14. Lee JH, Kim SS (2000) Changes in methyl pyrazines of cocoa beans during microwave roasting. Korean J Food Sci Technol, 32, 654-658
  15. Cheigh HS, Nam JH, Kim TJ, Kwon TW (1975) Studies on Soong-Neung flavor. Korean J Food Sci Technol, 7, 15-21
  16. Bradbury A, Weers M (1995) Non-volatile compounds analysis in coffee. Kaft Eur Anal Method, 5-17
  17. Folin O, Denis W (1912) On phosphotungstic phosphomolybdic compounds as color reagent. J Biological Chem, 12, 239-249
  18. Giovanni C, Manuela C, Gloria C, Filippo M, Luigi O, Massimo R, Gianni S, Veronica S, Giacomo T, Sauro V (2012) Optimization of espresso machine parameters through the analysis of coffee odorants by HS-SPME-GC/MS. J Food Chem, 135, 1127-1133 https://doi.org/10.1016/j.foodchem.2012.06.024
  19. Heo JC, Lee DY, Son MS, Yun CY, Hwang JS, Kang SW, Kim TH, Lee SH (2008) Effects of mole crickets (Gryllotalpa orientalis) extracts on anti-oxidant and anti-inflammatory activities. J Life Sci, 18, 509-514 https://doi.org/10.5352/JLS.2008.18.4.509
  20. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26, 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  21. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power" : The FRAP assay. Anal Biochem, 239, 70-76 https://doi.org/10.1006/abio.1996.0292
  22. Matsui T, Ueda T, Oki T, Sugita K, Terahara N, Matsumoto K (2001) ${\alpha}$-Glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. J Agr Food Chem, 49, 1948-1951 https://doi.org/10.1021/jf001251u
  23. Gao H, Kawabata J (2005) ${\alpha}$-Glucosidase inhibition of 6-hydroxyflavones. Part 3. Synthesis and evaluation of 2,3,4-trihydroxybenzoyl-containingflavonoid analogs and 6-aminoflavones as ${\alpha}$-glucosidase inbibitors. Bioorg Med Chem, 13, 1661-1671 https://doi.org/10.1016/j.bmc.2004.12.010
  24. Clifford MN, Wight J (1976) The measurement of feruloylquinic acids and caffeoylquinic acids in coffee beans. J Sci Food Agric, 27, 73-84 https://doi.org/10.1002/jsfa.2740270112
  25. Halliwell B, Aeschbach R, Loliger J, Aruoma OI (1995) The characterization of antioxidants. Food Chem Toxicol, 33, 601-617 https://doi.org/10.1016/0278-6915(95)00024-V
  26. Imai J, Ide N, Nagae S, Moriguchi T, Matsuura H, Itakura Y (1994) Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Plant Med, 60, 417-420 https://doi.org/10.1055/s-2006-959522
  27. Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci, 2, 152-159 https://doi.org/10.1016/S1360-1385(97)01018-2
  28. Farah A, Donangelo CM (2006) Phenolic compound in coffee. Braz J Plant Physiol, 18, 23-26
  29. Ku Madihah KY, Zaibunnisa AH, Norashikin S, Rozita O, Misnawi J (2013) Optimization of roasting conditions for high-quality Arabica coffee. International Food Res J, 20, 1623-1627
  30. Kalt W (2005) Effects of production and processing factors on major fruit and vegetable antioxidant. J Food Sci, 70, 11-19 https://doi.org/10.1111/j.1365-2621.2005.tb09053.x
  31. Perron NR, Brumaghim JL (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys, 53, 75-100 https://doi.org/10.1007/s12013-009-9043-x
  32. Perez Hernandez LM, Chavez Quiroz K, Medina Juarez LA, Meza NG (2012) Phenolic characterization, melanoidins and antioxidant activity of some commercial coffee from Coffea arabica and Coffea canephora. J Mexican Chemical Soc, 56, 430-435
  33. Kwon JW, Lee HK, Park HJ, Kwon TO, Choi HR, Song JY (2011) Screening of biological activities to different ethanol extracts of Rubus coreanus Miq. Korean J Medicinal Crop Sci, 19, 325-333 https://doi.org/10.7783/KJMCS.2011.19.5.325
  34. Baron AD (1998) Postprandial hyperglycemia and ${\alpha}$-glucosidase inhibitors. Diabetes Res Clin Pract, 40, 51-55 https://doi.org/10.1016/S0168-8227(98)00043-6
  35. Shinde J, Taldone T, Barletta M, Kunaparaju N, Hu B, Kumar S, Placido J, William ZS (2008) ${\alpha}$-Glucosidase inhibitory activity of Syaygium cumini (Linn.) Skeels seed kernel in vitro and in Goto-Kakizaki (GK) rats. Carbohyd Res, 343, 1278-1281 https://doi.org/10.1016/j.carres.2008.03.003
  36. Lee MH, Lee JS, Yang HC (2008) ${\alpha}$-Amylase inhibitory activity of flower and leaf extracts from buckwheat (Fagopyrum esculentum). J Korean Soc Food Sci Nutr, 37, 42-47 https://doi.org/10.3746/jkfn.2008.37.1.42
  37. Anderson RA, Polansky MM (2002) Tea enhances insulin activity. J Agric Food Chem, 50, 7182-7186 https://doi.org/10.1021/jf020514c