DOI QR코드

DOI QR Code

식물에서 분자 마커의 동향

허만규
Huh, Man Kyu

  • 투고 : 2015.06.29
  • 심사 : 2015.07.22
  • 발행 : 2015.07.30

초록

분자 마커는 유기체에서 다른 유기체와 분자적 수준에서 식별하는 마커이다. 유전적 분석을 위한 분자 마커의 발달은 식물 유전학, 다양한 구조와 가능을 이해하는데 기여하였다. DNA 마커는 임의유전자 증폭에서 다형성을 탐지하는 기법이나 방법(예를 들면 서든 블로팅, 핵산 교잡법, PCR을 이용한 중합효소 연쇄 증폭 반응, DNA 서열화)으로 RFLP, AFLP, RAPD, SSR, SNP 등을 이용하였고 현재에도 이용하고 있다. 최근 기능성 유전자를 이용한 기능성 마커가 각광을 받고 있다. 기능성 마커는 다형성 서열에서 유래한 것으로 표현형 변이를 내포하고 있다. 이런 개념에서 출발한 기능성 마커는 모든 유전자를 타깃으로 할 수 있으나 식물에서는 P450, 튜블린 형성 유전자의 다형성(TBPs), 전이요소 마커(TEMs), 병원균 저항성 유전자 마커(RGMs), RNA를 기반으로 한 마커(RBMs) 등이 널리 이용되고 있다. 본 연구는 Poczai 등의 총설을 기반으로 구성하였다. 식물에서 이런 분자 마커의 이용은 식물의 분화, 진화, 생리적 기능성 유전자의 변화 등 생물학 전반에 관한 정보 획득에 도움을 될 것이다.

키워드

DNA markers;functional molecular markers;plants;PCR;Poczai et al.

참고문헌

  1. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. and Tingey, S. V. 1990. DNA polymorphism’s amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 6531-6535. https://doi.org/10.1093/nar/18.22.6531
  2. Zietkiewicz, E., Rafalski, A. and Labuda, D. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20, 176-183. https://doi.org/10.1006/geno.1994.1151
  3. Seibt, K. M., Wenke, T., Wollrab, C., Junghans, H., Muders, K., Dehmer, K. J., Diekmann, K. and Schmidt, T. 2012. Development and application of SINE-based markers for genotyping of potato varieties. Theor. Appl. Genet. 125, 185-196. https://doi.org/10.1007/s00122-012-1825-7
  4. Van der Linden, C. G., Wouters, D. C. A. E., Mihalka, V., Kochieva, E. Z., Smulders, M. J. M. and Vosman, B. 2004. Efficient targeting of plant disease resistance loci using NBS profiling. Theor. Appl. Genet. 109, 384-393. https://doi.org/10.1007/s00122-004-1642-8
  5. Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van De Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407-4414. https://doi.org/10.1093/nar/23.21.4407
  6. Wang, Q., Zhang, B. and Lu, Q. 2009. Conserved region amplificationpolymorphism (CoRAP), a novel marker technique for plant genotyping in Salvia miltiorrhiza. Plant Mol. Biol. Rep. 27, 139-143. https://doi.org/10.1007/s11105-008-0065-0
  7. Waugh, R., McLean, K., Flavell, A. J., Pearce, S. R., Kumar, A., Thomas, B. B. and Powell, W. 1997. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol. Gen. Genet. 253, 687-694. https://doi.org/10.1007/s004380050372
  8. Weining, S. and Langridge, P. 1991. Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction. Theor. Appl. Genet. 82, 209-216.
  9. Yamanaka, S., Suzuki, E., Tanaka, M., Takeda, Y., Watanabe, J. A. and Watanabe, K. N. 2003. Assessment of cytochrome P450 sequences offers a useful tool for determining genetic diversity in higher plant species. Theor. Appl. Genet. 108, 1-9. https://doi.org/10.1007/s00122-003-1403-0
  10. Huh, M. K., Bang, K. H. and Choi, J. S. 2007. Identification of Atractylodes japonica and A. macrocephala by AFLP and SCAR Markers. Horti. Environ. Biotech. 47, 201-205.
  11. Kalendar, R., Antonius, K., Smýkal, P. and Schulman, A. H. 2010. iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor. Appl. Genet. 121, ㅊ. https://doi.org/10.1007/s00122-010-1398-2
  12. Li, G. and Quiros, C. F. 2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103, 455-461. https://doi.org/10.1007/s001220100570
  13. Kalendar, R., Grob, T., Regina, M., Suoniemi, A. and Schulman, A. 1999. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor. Appl. Genet. 98, 704-711. https://doi.org/10.1007/s001220051124
  14. Kantety, R. V., La Rota, M., Matthews, D. E. and Sorrells, M. E. 2002. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol. Biol. 48, 501-510. https://doi.org/10.1023/A:1014875206165
  15. Leister, D., Ballvora, A., Salamini, F. and Gebhardt, C. 1996. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat. Genet. 14, 421-429. https://doi.org/10.1038/ng1296-421
  16. McClintock, B. 1950. The origin and behavior of mutable loci in maize. PNAS 36, 344-355. https://doi.org/10.1073/pnas.36.6.344
  17. Pang, M., Percy, R. G., Hughs, E. and Zhang, J. 2008. Promoter anchored amplified polymorphism based on random amplified polymorphic DNA (PAAPRAPD) in cotton. Euphytica 167, 281-291.
  18. Poczai, P., Verga, I., Laos, M., Cseh, A., Bell, N., Valkonen, J. PT. and Hyvonen, J. 2013. Advances in plant gene-targeted and functional markers: a review. Plant Methods 9, 6. https://doi.org/10.1186/1746-4811-9-6
  19. Cernák, I., Taller, J., Wolf, I., Fehér, E., Babinszky, G., Alföldi, Z., Csanádi, G. and Polgár, Z. 2008. Analysis of the applicability of molecular markers linked to the PVY extreme resistance gene Rysto, and the identification of new markers. Acta Biol. Hun. 59, 195-203. https://doi.org/10.1556/ABiol.59.2008.2.6
  20. Galasso, I., Manca, A., Braglia, L., Martinelli, T., Morello, L. and Breviario, D. 2010. h-TBP: an approach based on intron-length polymorphism for the rapid isolation and characterization of the multiple members of the β-tubulin gene family in Camelina sativa (L.) Crantz. Mol. Breeding 28, 635-645.
  21. Collard, B. C. Y. and Mackill, D. J. 2009a. Conserved DNA-derived polymorphism (CDDP): a simple and novel method for generating DNA markers in plants. Plant Mol. Biol. Rep. 27, 558-562. https://doi.org/10.1007/s11105-009-0118-z
  22. Collard, B. C. Y. and Mackill, D. J. 2009b. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. Rep. 27, 86-93. https://doi.org/10.1007/s11105-008-0060-5
  23. Desmarais, E., Lanneluc, I. and Lagnel, J. 1998. Direct amplification of length polymorphisms (DALP), or how to get and characterize new genetic markers in many species. Nucleic Acids Res. 26, 1458-1465. https://doi.org/10.1093/nar/26.6.1458
  24. Gui, Y., Yan, G., Bo, S., Tong, Z., Wang, Y., Xiao, B., Lu, X., Li, Y., Wu, W. and Fan, L. 2011. iSNAP: a small RNA-based molecular marker technique. Plant Breeding 130, 515-520. https://doi.org/10.1111/j.1439-0523.2011.01872.x
  25. Hamada, H. M., Petrino, M. G. and Kakunaga, T. 1982. A novel repeated element with Z-DNA forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA 79, 6465-6469. https://doi.org/10.1073/pnas.79.21.6465
  26. Hu, J. and Vick, B. B. A. 2003. Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol. Biol. Rep. 21, 289-294. https://doi.org/10.1007/BF02772804
  27. Breviario, D., Baird, W. V., Sangoi, S., Hilu, K., Blumetti, P. and Gianì, S. 2007. Polymorphism and resolution in targeted fingerprinting with combined β-tubulin introns. Mol. Breeding 20, 249-259. https://doi.org/10.1007/s11032-007-9087-9
  28. Bachem, C. W., van der Hoeven, R. S., de Bruijn, S. M., Vreugdenhil, D., Zabeau, M. and Visser, R. G. 1996. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J. 9, 745-753. https://doi.org/10.1046/j.1365-313X.1996.9050745.x
  29. Bardini, M., Lee, D., Donini, P. and Mariani, A. 2004. Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species. Genome 291, 281-291.
  30. Bostein, D., White, R. L., Skolnick, M. and Davis, R. W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314-331.
  31. Bryan, G. J., Stephenson, P., Collins, A., Kirby, J., Smith, J. B. and Gale, M. D. 1999. Low levels of DNA sequence variation among adapted genotypes of hexaploid wheat. Theor. Appl. Genet. 99, 192-198. https://doi.org/10.1007/s001220051224