DOI QR코드

DOI QR Code

Hot Topic Prediction Scheme Considering User Influences in Social Networks

소셜 네트워크에서 사용자의 영향력을 고려한 핫 토픽 예측 기법

  • 노연우 (충북대학교 정보통신공학부) ;
  • 김대윤 (충북대학교 정보통신공학부) ;
  • 한지은 (충북대학교 정보통신공학부) ;
  • 육미선 (충북대학교 정보통신공학부) ;
  • 임종태 (충북대학교 정보통신공학부) ;
  • 복경수 (충북대학교 정보통신공학부) ;
  • 유재수 (충북대학교 정보통신공학부)
  • Received : 2015.07.23
  • Accepted : 2015.08.05
  • Published : 2015.08.28

Abstract

Recently, interests in detecting hot topics have been significantly growing as it becomes important to find out and analyze meaningful information from the large amount of data which flows in from social network services. Since it deals with a number of random writings that are not confirmed in advance due to the characteristics of SNS, there is a problem that the reliability of the results declines when hot topics are predicted from the writings. To solve such a problem, this paper proposes a high reliable hot topic prediction scheme considering user influences in social networks. The proposed scheme extracts a set of keywords with hot issues instantly through the modified TF-IDF algorithm based on Twitter. It improves the reliability of the results of hot topic prediction by giving weights of user influences to the tweets. To show the superiority of the proposed scheme, we compare it with the existing scheme through performance evaluation. Our experimental results show that our proposed method has improved precision and recall compared to the existing method.

Keywords

Social Network Services(SNS);Twitter;Hot Topics;Prediction

Acknowledgement

Supported by : 정보통신기술진흥센터, 한국연구재단, 한국에너지기술평가원(KETEP)

References

  1. 하일규, "소셜 네트워크 서비스의 연구경향 분석:Twitter 관련 연구 중심", 한국콘텐츠학회논문지, 제14권, 제9호, pp.567-581, 2014.
  2. 민정식, "트위터 이용과 정치 참여", 한국지역언론학회, 제12권, 제2호, pp.274-303, 2012.
  3. 허상희, "트위터에서 트윗의 특징과 유형 연구", 한민족어문학회, 제61집, pp.455-494, 2012.
  4. H. Kim, S. Lee, and S. Kyeong, "Discovering Hot Topics using Twitter Streaming Data," Proc. International Conference on Advances in Social Networks Analysis and Mining, pp.1215-1220, 2013.
  5. J. Haziq and S. Khushal, "'Good' versus 'Bad' Opinion on Micro Blogging Networks: Polarity Classification of Twitter," International Journal of Computer Science and Mobile Computing, Vol.3, No.8, pp.49-56, Aug. 2014.
  6. RuiGuo Yu, ManKun Zhao, Peng Chang, and MuWen He, "Online hot topic detection from web news archive in short terms," Proc. IInternational Conference on Fuzzy Systems and Knowledge Discovery, pp.919-923, Aug. 2014.
  7. https://ko.wikipedia.org/wiki/TF-IDF
  8. 이은혜, SNS 신뢰도에 영향을 미치는 요인에 관한 연구, 세종대학교, 2012.
  9. M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi, "Measuring User Influence in Twitter: The Million Follower Fallacy," Proc. International AAAI Conference on Weblogs and Social Media, pp.10-17, 2010.
  10. https://dev.twitter.com/streaming/overview
  11. J. Markus, H. Rainer, and D. Andreas, "On the Evaluation of Document Analysis Components by Recall, Precision, and Accuracy," Proc. International Conference on Document Analysis and Recognition, pp.713-716, 1999

Cited by

  1. CNN-based malicious user detection in social networks vol.30, pp.2, 2017, https://doi.org/10.1002/cpe.4163