Sloshing Analysis in Rectangular Tank with Porous Baffle

투과성 내부재가 설치된 사각형 탱크내의 슬로싱 해석

  • Received : 2014.11.13
  • Accepted : 2015.02.09
  • Published : 2015.02.28


An analytical model of liquid sloshing is developed to consider the energy-loss effect through a partially submerged porous baffle in a horizontally oscillating rectangular tank. The nonlinear boundary condition at the porous baffle is derived to accurately capture both the added inertia effects and the energy-loss effects from an equivalent non-linear drag law. Using the eigenfunction expansion method, the horizontal hydrodynamic force (added mass, damping coefficient) on both the wall and baffle induced by the fluid motion is assessed for various combinations of porosity, submergence depth, and the tank's motion amplitude. It is found that a negative value for the added mass and a sharp peak in the damping curve occur near the resonant frequencies. In particular, the hydrodynamic force and free surface amplitude can be largely reduced by installing the proper porous baffle in a tank. The optimal porosity of a porous baffle is near P=0.1.


Porous Baffl;Energy Loss;Drag Coefficient;Sloshing;Resonant Frequency;Added Mass


  1. Cho, I.H., Kim, M.H., 2008. Wave Absorbing System Using Inclined Perforated Plates. Journal of Fluid Mechanics, 608, 1-20.
  2. Cho, I.H., Hong, S.W., 2004. Development of a Wave Absorbing System Using an Inclined Punching Plate. Journal of Ocean Engineering and Technology, 18(1), 1-6.
  3. Cho, I.H., 2013. Reflection and Transmission Coefficients by a Surface-Mounted Horizontal Porous Plate. Journal of Korean Society of Coastal and Ocean Engineering, 25(5), 327-334.
  4. Bennett, G.S., McIver, P., Smallman, J.V., 1992. A Mathematical Model of a Slotted Wavescreen Breakwater. Coastal Engineering, 18, 231-249.
  5. Chwang, A.T., Chan, A.T., 1998. Interaction between Porous Media and Wave Motion. Annual Review of Fluid Mechanics, 30, 53-84.
  6. Crowley, S., Porter, R., 2012. The Effect of Slatted Screens on Waves. Journal of Engineering Mathematics, 76, 53-76.
  7. Faltinsen, O.M., Firoozkoohi, R., Timokha, A.N., 2011. Analytical Modeling of Liquid Sloshing in a Two-Dimensional Rectangular Tank with a Slat Screen. Journal of Engineering Mathematics, 70, 93-109.
  8. Fediw, A., Isyumov, N., Vickery, B., 1995. Performance of a Tuned Sloshing Water Damper. Journal of Wind Engineering and Industrial Aerodynamics, 57, 237-247.
  9. Ibrahim, R.A., 2005. Liquid Sloshing Dynamics, (Theory and Applications). Cambridge University Press.
  10. Mei, C.C., 1989. The Applied Dynamics of Ocean Surface Waves. Advanced Series on Ocean Engineering. 1, World Scientific, Singapore.
  11. Mei, C.C., Liu, P.L. F., Ippen, A.T., 1974. Quadratic Head Loss and Scattering of Long Waves. Journal of Waterway, Harbour and Coastal Engineering Division, 99, 209-229.
  12. Sollitt, C.K., Cross, R.H., 1972. Wave Transmission through Permeable Breakwaters. Proceedings of the 13th Conference on Coastal Engineering. ASCE, Vancouver, Canada, 1827-1846.
  13. Warnitchai, P., Pinkaew, T., 1998. Modelling of Liquid Sloshing in Rectangular Tanks with Flow-Dampening Devices. Engineering Structure, 20, 593-600.
  14. Wu, J., Wan, Z., Fang, Y., 1998. Wave Reflection by a Vertical Wall with an Horizontal Submerged Porous Plate. Ocean Engineering, 25(9), 767-779.
  15. Yu, X., 1995. Diffraction of Water Waves by Porous Breakwaters. Journal of Waterway Port, Coastal, Ocean Engineering, 121, 275-282.

Cited by

  1. Experimental Study on Sloshing in Rectangular Tank with Vertical Porous Baffle vol.29, pp.4, 2015,
  2. Sloshing Damping in a Swaying Rectangular Tank Using a Porous Bulkhead vol.32, pp.4, 2018,