DOI QR코드

DOI QR Code

Theoretical Study of Acetic Acid-Sulfur Dioxide Complexes

Acetic Acid-Sulfur Dioxide 복합체에 대한 이론 연구

  • Received : 2015.04.10
  • Accepted : 2015.04.23
  • Published : 2015.06.20

Abstract

The formation of complexes between SO2 and acetic acid was studied theoretically. The ab initio and DFT calculations were performed with MP2 and B3LYP methods using 6-311++G(d,p), aug-cc-pVDZ and aug-cc-pVTZ basis sets. Six stable complexes were identified, and three stable bidentate complexes, C1, C2 and C3, were formed between SO2 and syn-acetic acid, which is more stable form of acetic acid. Anti-acetic acid also form three complexes, C4, C5 and C6, with SO2. C4 is bidentate and C5, C6 are monodentate complexes, which are less stable. The most stable complex, C1 has S⋯O=C and O⋯H-O interactions, and the S⋯O and O⋯H distances are less than the sum of van der Waals radii. The vibrational frequencies of complexes were calculated and were compared with those of monomers. The frequency shifts after formation of complex were found, and the overall pattern of frequency shifts relative to monomers is similar among the six complexes.

Keywords

Acetic acid-SO2 complex;SO2-syn-acetic acid complex;SO2-anti-acetic acid complex

References

  1. Rennenberg, M.; Brunold, C.; De-Kok, L. J.; Stulen, I., Sulfur Nutrition and Sulfur Assimilation in higher Plants; SPB Academic Publishing: The Hague, 1990; p 111.
  2. Maugh II, T. H., Science 1979, 205, 383. https://doi.org/10.1126/science.205.4404.383
  3. Agrawal, M.; Singha, B.; Rajputa, M.; Marshallb, F.; Bellb, J. N. B., Environ. Pollut. 2003, 126, 323. https://doi.org/10.1016/S0269-7491(03)00245-8
  4. Ford, T. A., J. Mol. Struct. 2009, 924, 466.
  5. Steudel, R.; Steudel, Y., Eur. J. Inorg. Chem. 2009, 2009, 1393. https://doi.org/10.1002/ejic.200801158
  6. Dayton, D. C.; Miller, R. E., J. Phys. Chem. 1990, 94, 6641. https://doi.org/10.1021/j100380a023
  7. Millar, L. J.; Ford, T. A., J. Mol. Struct. 2005, 744, 195.
  8. Yang, H.; Wright, N. J.; Gagnon, A. M.; Gerber, R. B., Phys. Chem. Chem. Phys. 2002, 4, 1832. https://doi.org/10.1039/b108907b
  9. Cukras, J.; Sadlej, J. THEOCHEM 2007, 819, 41. https://doi.org/10.1016/j.theochem.2007.05.025
  10. Hirabayashi, S.; Ito, F.; Yamada, K. M. T., J. Chem. Phys. 2006, 125, 034508. https://doi.org/10.1063/1.2214716
  11. Cukras, J.; Sadlej, J., Pol. J. Chem. 2008, 82, 675.
  12. Steudel, R.; Steudel, Y., Eur. J. Inorg. Chem. 2007, 2007, 4385. https://doi.org/10.1002/ejic.200700399
  13. Eigner, A. A.; Wrass, J. P.; Smith, E. L.; Knutson, C. C.; Phillips, J. A., J. Mol. Struct. 2009, 919, 312. https://doi.org/10.1016/j.molstruc.2008.09.024
  14. Oh, J. J.; Hillig, K. W. I.; Kuczkowski, R. L. J. Am. Chem. Soc. 1991, 113, 7480. https://doi.org/10.1021/ja00020a004
  15. Oh, J. J.; Hillig, K. W. I.; Kuczkowski, R. L. Inorg. Chem. 1991, 30, 4583. https://doi.org/10.1021/ic00024a025
  16. Sun, L.; Ioannou, I. I.; Kuczkowski, R. L. Mol. Phys. 1996, 88, 255. https://doi.org/10.1080/00268979609482414
  17. Tachikawa, H.; Abe, S.; Iyama, T., Inorg. Chem. 2001, 40, 1167. https://doi.org/10.1021/ic000880i
  18. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.03. Gaussian, Inc.: Pittsburgh, PA, 2003.
  19. Peebles, S. A.; Sun, L. H.; Ioannou, I. I.; Kuczkowski, R. L. J. Mol. Struct. 1999, 485-486, 211. https://doi.org/10.1016/S0022-2860(99)00045-9
  20. Peebles, S. A.; Sun, L. H.; Kuczkowski, R. L. J. Chem. Phys. 1999, 110, 6804. https://doi.org/10.1063/1.478584
  21. Ford, T. A., J. Mol. Struct. 2009, 924, 466.
  22. Wang, B.; Hou, H., Chem. Phys. Lett. 2005, 410, 235. https://doi.org/10.1016/j.cplett.2005.05.091
  23. Wierzejewska, M.; Mielke, Z.; Wieczorek, R.; Latajka, Z., Chem. Phys. 1998, 228, 17. https://doi.org/10.1016/S0301-0104(97)00336-4
  24. Sun, L.; Tan, X. -Q.; Oh, J. J.; Kuczkowski, R. L., J. Chem. Phys. 1995, 103, 6440. https://doi.org/10.1063/1.470730
  25. Takakazu, N.; Kentaroh, K.; Nobuyuki, N. J. Phys. Chem. A 1999, 103, 8595.
  26. Peebles, R. A.; Kuczkowski, R. L. J. Chem. Phys. 2000, 112, 8839. https://doi.org/10.1063/1.481498
  27. Rayon, V. M.; Sordo, J. A., Chem. Phys. Lett. 2001, 341, 575. https://doi.org/10.1016/S0009-2614(01)00506-1
  28. Keller, J. W.; Harrod, B. L.; Chowdhury, S. A. J. Phys. Chem. A 2010, 114, 13182. https://doi.org/10.1021/jp1076214