DOI QR코드

DOI QR Code

Controlling Size, Shape and Polymorph of TiO2 Nanoparticles by Temperature-Controlled Hydrothermal Treatment

  • Kwon, Do Hun ;
  • Jung, Young Hee ;
  • Kim, Yeong Il
  • Received : 2015.02.23
  • Accepted : 2015.03.10
  • Published : 2015.06.20

Abstract

The crystallization and morphology change of amorphous titanias by hydrothermal treatment have been investigated. The amorphous titanias were prepared by pure water hydrolysis of two different precursors, titanium tetraisopropoxide (TTIP) and TTIP modified with acetic acid (HOAc) and characterized prior to hydrothermal treatment. In order to avoid complicate situation, the hydrothermal treatment was performed in a single solvent water with and without strong acids at various temperatures. The effects of strong acid, temperature and time were systematically investigated on the transformation of amorphous titania to crystalline TiO2 under simple hydrothermal condition. Without strong acid the titanias were transformed into only anatase phase nanoparticle regardless of precursor type, temperature and time herein used (up to 250 ℃ and 48 hours). The treatment temperature and time effected only on the crystalline size, not on the crystal phase et al. However, it was clearly revealed that the strong acids such as HNO3 and HCl catalyzed the formation of rutile phase depending on temperature. HCl was slightly better than HNO3 in this catalytic activity. The morphology of rutile TiO2 formed was also a little affected by the type of acid. The precursor modifier, HOAc slightly reduced the catalytic activity of the strong acids in rutile phase formation.

Keywords

TiO2;Anatase;Rutile;Hydrothermal treatment;Nanoparticle;Nanorod

References

  1. (a) Chen, H. Ma, J.; Zhao, Z.; Qi, L. Chem. Mater. 1995, 7, 663. https://doi.org/10.1021/cm00052a010
  2. (b) Wu, M.; Long, J; Huang, A.; Luo, Y. Langmuir 1999, 15, 8822. https://doi.org/10.1021/la990514f
  3. (c) Ovenstone, J.; Yanagisawa, K. Chem. Mater. 1999, 11, 2770. https://doi.org/10.1021/cm990172z
  4. (d) Wang, C.-C.; Ying, J. Y. Chem. Mater. 1999, 11, 3113. https://doi.org/10.1021/cm990180f
  5. (e) Yang, J.; Mei, S.; Ferreira, J. M. F. J. Am. Ceram. Soc. 2000, 83, 1361. https://doi.org/10.1111/j.1151-2916.2000.tb01394.x
  6. (f) Yang, J.; Mei, S.; Ferreira, J. M. F. Mater. Sci. Eng. C 2001, 15, 183. https://doi.org/10.1016/S0928-4931(01)00274-0
  7. (g) Wu, M.; Lin, G.; Chen, D.; Wang, G.; He, D.; Feng, S.; Xu, R. Chem. Mater. 2002, 14, 1974. https://doi.org/10.1021/cm0102739
  8. Parra, R.; Góes, M. S.; Castro, M. S.; Longo, E.; Bueno, P. R.; Varela, J. A. Chem. Mater. 2008, 20, 143. https://doi.org/10.1021/cm702286e
  9. JCPDS 86-1157.
  10. The pressure was calculated as the sum of air and vapor pressure which depend on temperature, linearly and by Clausius-Clapeyron equation, respectively.
  11. In order to eliminate pH dependence of structural evolution we used the acid amount enough to maintain pH nearly 0 before and after hydrothermal treatment.
  12. (a) Linsebigler, A. L.; Lu, G.; Yates, Jr. J. T. Chem. Rev. 1995, 95, 735, https://doi.org/10.1021/cr00035a013
  13. (b) Thomson, T. L.; Yates, Jr. J. T. Chem. Rev. 2006, 106, 4428. https://doi.org/10.1021/cr050172k
  14. Fujishima, A.; Honda, K. Nature 1972, 238, 37. https://doi.org/10.1038/238037a0
  15. O’Regan, B.; Grätzel. M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  16. Kim, I. D.; Rothchild, A.; Lee, B. H.; Jo, S. M.; Tuller, H. L. Nano. Lett. 2006, 6, 2009. https://doi.org/10.1021/nl061197h
  17. Werner, A.; Roos, A. Sol. Ener. Mater. Sol. Cells 2007, 91, 609. https://doi.org/10.1016/j.solmat.2006.11.015
  18. Choi, H.; Kim, Y. J.; Varma, R. S.; Dionysiou, D. D. Chem. Mater. 2006, 18, 5377. https://doi.org/10.1021/cm0615626
  19. Chen, X.; Mao, S. S. Chem. Rev. 2007, 107, 2891 https://doi.org/10.1021/cr0500535
  20. (k) Li, J.-G.; Ishigaki, T.; Sun, X. J. Phys. Chem. C 2007, 111, 4969. https://doi.org/10.1021/jp0673258
  21. (h) Anderson, M.; Österlund, L.; Ljungström, S.; Palmqvist, A. J. Phys. Chem. B 2002, 106, 10674. https://doi.org/10.1021/jp025715y
  22. (i) Chae, S. Y.; Park, M. K.; Lee, S. K.; Kim, T. Y.; Kim, S. K.; Lee, W. I. Chem. Mater. 2003, 15, 3326. https://doi.org/10.1021/cm030171d
  23. (j) Su. C.; Tseng, C.-M.; Chen, L.-F; You, B.-H.; Hsu, B.-C.; Chen, S.-S. Thin Solid Films 2006, 498, 259. https://doi.org/10.1016/j.tsf.2005.07.123
  24. Our study excludes the effect of alcoholic solvents for the precursor TTIP. Some studies showed that the content of water relative to the alcoholic solvent for Ti alcoxide was one of important factors to determining the size of synthesized TiO2 nanoparticles.
  25. Tsai, M. T. J. Non-Cryst. Solids 2002, 298, 116. https://doi.org/10.1016/S0022-3093(02)00918-3
  26. Colomer, M.; Velasco, M. Jurado, J. J. Sol-Gel Sci. Technol. 2006, 39, 211. https://doi.org/10.1007/s10971-006-8207-z
  27. Cornell, R. M.; Schwertmann, U. The Iron Oxides; VCH: New York, 1996; p. 314.