DOI QR코드

DOI QR Code

Simultaneous determination of betaine and choline using derivatization by HPLC with UV detection

HPLC-UV검출방법으로 유도체화를 통한 비테인과 콜린의 동시분석

  • Received : 2015.03.02
  • Accepted : 2015.04.08
  • Published : 2015.04.25

Abstract

Extraction of quaternary ammonium compounds (choline and betaine) from plant samples (spinach) using ion exchange resin (AG1, OH form) is a very simple and inexpensive approach. However, it is very hard to determine amounts of choline and betaine simultaneously using high-performance liquid chromatography-ultraviolet (HPLC-UV) detection. Unlike choline, betaine has low molar absorptivity in UV-visible (UV-Vis) region, which makes it difficult to carry out UV-Vis detection of betaine. The mixture of quaternary ammonium compounds (choline and betaine) was derivatized using 2-bromo acetophenone as a derivatizing agent. As a result, choline did not react with the derivatizing agent, whereas betaine formed a betaine derivative. This betaine derivative exhibited detectable UV absorption with baseline separation between choline and the betaine derivative. Thus, with this method, choline and betaine can be determined simultaneously by using the HPLCUV method through one-step derivatization, which is an easy, sensitive, and reliable method.

Keywords

choline;betaine;derivatization;HPLC;UV detection

References

  1. R. G. Wyn Jones and R. Storey, In ‘Betaines’, p 171, L. G. Paleg and D. Aspinall, Eds., Academic press, Sydney, 1981.
  2. D. Rhodes and A. D. Hanson, Annu. Rev. Plant Physiol. Plant Mol. Biol., 44, 357-384 (1993). https://doi.org/10.1146/annurev.pp.44.060193.002041
  3. H. Takashi, M. Yukimasa, A. Nobumi, Y. Susumu, S. Masaru, I. Yoshio, O. Yoshikiyo and F. L. Wong, Analyst, 117, 1033-1035 (1992). https://doi.org/10.1039/an9921701033
  4. J. Zhang, J. K. Blusztajn and S. H. Zeisel, Biochim. Biophys. Acta, 1117(3), 333-339 (1992). https://doi.org/10.1016/0304-4165(92)90033-Q
  5. B. Landfald and A. R. Strom, J. Bacteriol., 165(3), 849-855 (1986). https://doi.org/10.1128/jb.165.3.849-855.1986
  6. S. T. Chambers, C. M. Kunin, D. Miller and A. Hamada, J. Bacteriol., 169(10), 4845-4847 (1987). https://doi.org/10.1128/jb.169.10.4845-4847.1987
  7. S. A. Eckernas and S. M. Aquilonius, Scand. J. Clin. Lab. Invest., 37, 183-187 (1977). https://doi.org/10.1080/00365517709156075
  8. H. I. Pal, U. M. Per, K. Gery and L. A. Ernst, Clin. Chem., 49(2), 286-294 (2003). https://doi.org/10.1373/49.2.286
  9. N. F. Sheard and S. H. Zeisel, Nutrition, 5, 1-5 (1989).
  10. F. L Wang and D. R. Haubrich, Anal Biochem., 63(1), 195-201 (1975). https://doi.org/10.1016/0003-2697(75)90204-3
  11. K. E. McMahon and P. M. Farrell, Clin. Chim. Acta, 149(1), 1-12 (1985). https://doi.org/10.1016/0009-8981(85)90267-0
  12. E. A. Pomfret, K. A. DaCosta, L. L. Schurman and S. H. Zeisel, Anal. Biochem., 180, 85-90 (1989). https://doi.org/10.1016/0003-2697(89)90091-2
  13. T. Fossati, M. Colombo, C. Castiglioni and G. Abbiati, J. Chromatogr. B, 656, 59 (1994). https://doi.org/10.1016/0378-4347(94)00070-0
  14. J. Zhang and Y. Zhu, J. Chromatogr. A, 1170(1-2), 114-117 (2007). https://doi.org/10.1016/j.chroma.2007.09.014
  15. H. Koc, M. H. Mar, A. Ranasinghe, J. A. Swenberg and S. H. Zeisel, Anal. Chem., 74(18) 4734-4740 (2002). https://doi.org/10.1021/ac025624x
  16. J. J. Martin and J. D Finkelstein, Analyst. Biochem., 111(1), 72-76 (1981). https://doi.org/10.1016/0003-2697(81)90230-X
  17. M. Lever, L. Bason, C. Leaver, C. M. Hayman and S. T. Chambers, Anal. Biochem., 205(1), 14-21 (1992). https://doi.org/10.1016/0003-2697(92)90572-O
  18. P. E. Minker, S. T. Ingalls, L.S. kormos, D. E. Weir and C. L. Hoppel, J. Chromatogr. B, 336(1), 271-283 (1984). https://doi.org/10.1016/S0378-4347(00)85150-6
  19. R. M. C. Dawson, D. C. Elliot, W. H. Elliot and K. M. Jones, In ‘Data for Biochemical Research’, R.M.C. Dawson, Ed., University Press, Oxford, 1969.
  20. W. Hitz and A. D. Hanson, Phytochemistry, 19(11), 2371-2374 (1980). https://doi.org/10.1016/S0031-9422(00)91029-X
  21. J. Gorham, E. McDonnell and R. G. Wyn Jones, Anal. Chim. Acta, 138(1), 277-283 (1982). https://doi.org/10.1016/S0003-2670(01)85311-3
  22. J. Gorham, J. Chromatogr. A, 361, 301-310 (1986). https://doi.org/10.1016/S0021-9673(01)86919-3
  23. O. A. Al-Amoudi and A. Y. Ali, J. Microbiol. Methods, 10(4), 289-296 (1989). https://doi.org/10.1016/0167-7012(89)90016-X
  24. N. Kikuchi, K. Matsuno and T. Miki, Anal. Chim. Acta, 283(1), 338-343 (1993). https://doi.org/10.1016/0003-2670(93)85241-B
  25. F. Larher, Plant Physiol. Biochem., 26(1), 35-45 (1988).
  26. D. Rhodes, P. J. Rich, A. C. Myers, C. C. Reuter and G. C. Jamieson, Plant Physiol., 64, 781-805 (1987).
  27. M. H. Mar, T. W. Ridky, S.C. Garner and S. H. Zeisel, J. Nutr. Biochem., 6, 392 (1995). https://doi.org/10.1016/0955-2863(95)80008-Z
  28. H. Wittmann and E. Ziegler, Monatshefte fur chemie., 119(1), 103-111 (1988). https://doi.org/10.1007/BF00810092
  29. M. A. Bessieres, Y. Gibon, J. C. Lefeuvre and F. Larher, J. Agric. Food Chem., 47(9), 3718-3722 (1999). https://doi.org/10.1021/jf990031h