DOI QR코드

DOI QR Code

The preliminary evaluation of semi-quantitative analysis by in situ pre-chromatographic derivatization of amines and image analysis in TLC

TLC상 분리 전 직접적 유도체화 반응과 이미지 분석을 통한 아민 화합물의 반정량분석을 위한 선행평가

  • Kim, Younsu (Department of Scientific Criminal Investigation, Chungnam National University) ;
  • Choi, Sung-Woon (Department of Scientific Criminal Investigation, Chungnam National University)
  • 김연수 (충남대학교 평화안보대학원 과학수사학과) ;
  • 최성운 (충남대학교 평화안보대학원 과학수사학과)
  • Received : 2014.12.24
  • Accepted : 2015.02.09
  • Published : 2015.04.25

Abstract

A preliminary experiment was performed to develop a fast, convenient, and economical semi-quantitative method of analyzing amphetamine-like amines from images of derivatives. These were generated from the reaction (in situ, co-spot) of three amphetamine-like compounds with three derivatization reagents on a TLC plate. The attempt was made to optimize the reaction conditions for an efficient derivatization reaction, and TLC images taken by a digital camera were analyzed using two types of image analysis program (CP Atlas 2.0 and ImageJ) for repeatability (RSD, %) and linearity (R2). Then, their results were compared. For efficient derivatization, the reaction conditions needed to be modified. The results of image analysis of each of the samples at two different concentrations (0.5 mg/mL and 0.01 mg/mL) showed that the RSD values for reaction repeatability were in the range of 0.69-5.50%. From the calibration curves between the area of the derivative and the concentration of amines, the R2 values (R2 > 0.9906) for good linear correlation were found to be high, in a concentration range of 0.1-0.005 mg/mL of amines. In addition, the two programs demonstrated little difference in the analysis of repeatability and linearity of the derivatization, so that the current method has the potential to be used for the semi-quantitative analysis of amines.

Keywords

TLC;in situ derivatization;repeatability;linearity;image analysis

References

  1. J. Saminathan and T. Vetrichelvan, KMITL Sci. Tech. J., 11(2), 54-63 (2011).
  2. S. W. Choi, S. H. Oh and N. D. Sung, Korean J. Sci. Crimi. Investig., 7(2), 89-96 (2013).
  3. A. V. Irish Hess, J. Chem. Edu., 84(5), 842-847 (2007). https://doi.org/10.1021/ed084p842
  4. D. S. Maruti and S. K. Banerjee, J. Res. Pharm. Sci., 4(2), 310-315 (2013).
  5. C. R. Clark and M. M. Wells, J. Chromatogr. Sci., 16, 332-339 (1978). https://doi.org/10.1093/chromsci/16.8.332
  6. L. A. Barret, A. Polidori, F. Bonnete, P. Bernard-Savary and C. Jungas, J. Chromatogr. A, 1281, 135-141 (2013). https://doi.org/10.1016/j.chroma.2013.01.061
  7. P. C. Lindholm, J. S. Knuutinen, H. S. Ahkola and S. H. Herve, BioResources, 9(2), 3688-3732 (2014).
  8. P. Leroy, A. Nicolas and A. Moreau, J. Chromatogr., 282, 561-569 (1983). https://doi.org/10.1016/S0021-9673(00)91632-7
  9. S. Wawrzycki, E. Pyra and B. Wawrzycki, J. Planar Chromatogr., 14, 21-23 (2001).
  10. S. Hernndez-Cassou and J. Saurina, J. Chromatogr. B, 879(17), 1270-1281 (2011). https://doi.org/10.1016/j.jchromb.2010.11.020
  11. B. L. Ling, W. R. G. Baeyens, B. Del Castillo, K. Stragier, H. Marysael and P. De Moerloose, J. Pharm. Biomed. Anal., 7, 1671-1678 (1989). https://doi.org/10.1016/0731-7085(89)80181-5
  12. G. Maeder, M. Pelletier and W. Haerdi, J. Chromatogr., 593, 9-14 (1992). https://doi.org/10.1016/0021-9673(92)80258-V
  13. S. W. Choi, H. I. Lee and N. D. Sung, Anal. Sci. & Tech., 26(4), 228-234 (2013). https://doi.org/10.5806/AST.2013.26.4.228
  14. M. B. Gawande and P. S. Branco, Green Chem., 13(12), 3355-3359 (2011). https://doi.org/10.1039/c1gc15868f
  15. H. Yamada, A. Yamahara, S. Yasuda, M. Abe, K. Oguri, S. Fukushima and S. Ikeda-Wada, J. Anal. Toxicol., 26(1), 17-22 (2002). https://doi.org/10.1093/jat/26.1.17
  16. Y. S. Kim and S. W. Choi, Kor. J. Sci. Crim. Investig., 8(1), 31-36 (2014).
  17. R. Kubec and E. Dadkov, J. Chromatogr. A, 1216(41), 6957-6963, (2009). https://doi.org/10.1016/j.chroma.2009.08.032
  18. E. De Mey, G. Drabik-Markiewicz, H. De Maere, M. C. Peeters, G. Derdelinck, H. Paelinck and T. Kowalska, Food Chem., 130, 1017-1023 (2012). https://doi.org/10.1016/j.foodchem.2011.07.124
  19. J. M. Płotka, M. Biziuk and C. Morrison, TrAC Trends in Anal. Chem., 30(7), 1139-1158 (2011). https://doi.org/10.1016/j.trac.2011.03.013
  20. N. Kato, Science & Justice, 41(4), 239-244 (2001). https://doi.org/10.1016/S1355-0306(01)71907-7
  21. E. Deconinck, P. Y. Sacr, P. Courselle and J. O. De Beer, J. Chromatogr. Sci., 51, 791-806 (2013). https://doi.org/10.1093/chromsci/bmt006
  22. G. Gbitz and R. Wintersteiger, J. Anal. Toxicol., 4(3), 141-144 (1980). https://doi.org/10.1093/jat/4.3.141
  23. R. A. de Zeeuw, J. Hartstra and J. P. Franke, J. Chromatogr. A, 674(1), 3-13 (1994). https://doi.org/10.1016/0021-9673(94)85214-6
  24. R. Kasar, A. Gogia, K. Shah, V. Anand and C. Anand, RRJPA, 2(4), 1-8 (2013).
  25. C. Tistaert, B. Dejaegher and Y. Vander Heyden, Anal. Chim. Acta., 690, 148-161 (2011). https://doi.org/10.1016/j.aca.2011.02.023
  26. S. A. Kustrin and C. G. Hettiarachchi, Modern Chem. & Application, 2(1), e118 (2014).
  27. D. Casoni and C. Srbu, Talanta, 114, 117-123 (2013). https://doi.org/10.1016/j.talanta.2013.03.058
  28. E. Reich and A Schibli, In 'High-performance thin-layer chromatography for the analysis of medicinal plants', Thieme Medical Publishers, New York, USA (2006).
  29. B. L. Ling, W. R. G. Baeyens, B. Del Castillo, K. Stragier, H. Marysael and P. De Moerloose, J. Pharm. Biomed. Anal., 7, 1671-1678 (1989). https://doi.org/10.1016/0731-7085(89)80181-5
  30. R. M. Linares, J. H. Ayala, A. M. Afonso and V. Gonzalez, Analyst., 123, 725-729 (1998). https://doi.org/10.1039/a708500a