DOI QR코드

DOI QR Code

Dopamine determination using a biosensor based on multiwall carbon nanotubes paste and burley tobacco-peroxidase

담배 잎-peroxidase와 다중벽 탄소 나노튜브를 이용한 dopamine의 정량

  • Kwon, Hyoshik (Department of Chemistry Education, Chungbuk National University) ;
  • Jeon, Byong-Suk (Department of Chemistry Education, Chungbuk National University) ;
  • Pak, Yongnam (Department of Chemistry Education, Korea National University of Education)
  • 권효식 (충북대학교 화학교육과) ;
  • 전병숙 (충북대학교 화학교육과) ;
  • 박용남 (한국교원대학교 화학교육과)
  • Received : 2015.02.11
  • Accepted : 2015.03.25
  • Published : 2015.04.25

Abstract

The development of an enzymatic biosensor for dopamine determination based on multiwall carbon nanotubes (MWCNTs) and peroxidase obtained from the crude extract of burley tobacco (Nicotiana tabacum L.) was proposed. Peroxidase catalyzes the oxidation of dopamine to dopamine quinone. The influence on the response of analytical parameters of biosensors such as enzyme concentration, dopamine concentration, pH, and phosphate buffer solution concentration were investigated. The analytical parameters obtained, including sensitivity, linearity, and stability, were investigated. The proposed method for dopamine determination presented good selectivity even in the presence of uric acid and ascorbic acid. The sensor presented a higher response for dopamine in 0.010 M phosphate buffer at pH 6.50, with an applied potential of -0.15 V. The detection limit of the electrode was 2.7×10−6 M (S/N = 3) and the relative standard deviation of the measurements, which were repeated 10 times using 5.0×10−2 M dopamine, was 1.3%.

Keywords

burley tobacco biosensor;dopamine;multiwall carbon nanotube

References

  1. J. Wang and M. S. Lin, Electroanalysis, 1, 43 (1989). https://doi.org/10.1002/elan.1140010107
  2. H. S. Han, H. K. Lee, J. M. You, H. Jeong and S. Jeon, Sens. Actuators B, 190, 886-895 (2014). https://doi.org/10.1016/j.snb.2013.09.022
  3. R. A. Kamin and G. A. Wilson, Anal. Chem., 52, 1198 (1980). https://doi.org/10.1021/ac50058a010
  4. C. S. Caruso, I. C. Vieira and O. F. Filho, O. Anal. Lett., 32, 39 (1999). https://doi.org/10.1080/00032719908542597
  5. J. M. Frre and B. L. A. Renard, J. of Theoretical Biology, 101, 387-400 (1983). https://doi.org/10.1016/0022-5193(83)90146-7
  6. G. F. Fuhrmann and B. Vlker, Biomembranes, 1145, 180-182 (1993). https://doi.org/10.1016/0005-2736(93)90396-H
  7. M. D. P. T. Sotomayor, A. A. Tanaka and A. T. Kubota, J. Electroanal. Chem., 536, 71-81 (2002). https://doi.org/10.1016/S0022-0728(02)01205-6
  8. F. A. S. Ribeiroa, C. R. T. Tarleyb, K. B. Borgesa and A. C. Pereira, Sensors and Actuators B, 185, 743-754 (2013). https://doi.org/10.1016/j.snb.2013.05.072
  9. M. Pravda, C. Petit, Y. Michotte, J. M. Kauffmann and K. Vytras, J. Chromatogr. A., 727, 47-52 (1996). https://doi.org/10.1016/0021-9673(95)01103-X
  10. Y. F. Tu, Z. Q. Fu and H. Y. Chen, Sens. Actuators B., 80, 101 (2001). https://doi.org/10.1016/S0925-4005(01)00870-X
  11. Y. U. Chen, T. C. Tan and T. C. Chemical Engineering Science, 7, 1027 (1996).
  12. C. S. Caruso, I. C. Vieira and O. Fatibello-Filho, Anal. Lett., 32, 39-43 (1999). https://doi.org/10.1080/00032719908542597
  13. K. O. Lupetti, L. A. Ramos, I. C. Vieira and O. F. Filho, Il Farmaco, 60, 179-183 (2005). https://doi.org/10.1016/j.farmac.2004.11.005
  14. Y. Zou, C. Xiang, S. Li-Xian and F. Xu, Biosensors and Bioelectronics, 23(7), 1010-1016 (2008). https://doi.org/10.1016/j.bios.2007.10.009
  15. S. Iijima, Nature, 354, 56-58 (1991). https://doi.org/10.1038/354056a0
  16. Z. Herrasti, F. Martnez and E. Baldrich, Sens. Actuators B: Chemical, 203, 891-898 (2014). https://doi.org/10.1016/j.snb.2014.07.011
  17. P. Xiao, W. Wu, Y. Yu and F. Zhao, International J. of Electrochem. Sci., 2, 149-157 (2007).
  18. H. Beitollahi, J. B. Raoof and R. Hosseinzadeh, Electroanalysis, 23, 1934-1940 (2011). https://doi.org/10.1002/elan.201100242
  19. X. Liu, Y. Peng, X. Qu, S. Ai, R. Han and X. Zhu, J. of Electroanalyt. Chem., 654, 72-78 (2011). https://doi.org/10.1016/j.jelechem.2011.01.024
  20. Q. Zhao, L. Guan, G. Zhennan and Z. Qiankun, Electroanalysis, 17, 85-88 (2005). https://doi.org/10.1002/elan.200403123
  21. K. Yamamoto, G. Shi, T. Zhou, F. Xu, J. Xu, T. Kato, J.-Y. Jin and L. Jin, Analyst, 128, 249-254 (2003). https://doi.org/10.1039/b209698f
  22. F. A. de Souza Ribeiro, C. R. T. Tarleyb, K. B. B. and A. C. Pereiraa, Sens. Actuators B, 185, 743-754 (2013). https://doi.org/10.1016/j.snb.2013.05.072
  23. W. Birkmayer and P. Riederer, Understanding the Neurotransmitters, Springer, New York, 1-79 (1989).
  24. G. Stenstrm, B. Sjgren and J. Waldenstrm, Acta Med. Scand., 214, 145-152 (1983).
  25. J. R. Cooper, F. E. Bloom and R. H. Roth, The Biochemical Basis of Neuropharmacology, Oxford University Press, New York, pp. 259-311 (1986).
  26. J. S. Sidwell and G. A. Rechnitz, Biotechnol. Lett., 7, 419-425 (1985). https://doi.org/10.1007/BF01166215
  27. M. P. Connor, J. Sanchez, J. Wang, M. R. Smyth and S. Mannino, Analyst, 114, 1427-1429 (1989). https://doi.org/10.1039/an9891401427
  28. C. Petit, A. Gonzalez-Cortes and J. M. Kauffmann, Talanta, 42, 1783-1789 (1995). https://doi.org/10.1016/0039-9140(95)01645-7
  29. J. S. Sidwell and G. A. Rechnitz, Biotechnol. Lett., 7, 419-422 (1985). https://doi.org/10.1007/BF01166215
  30. M. P. Connor, J. Wang, W. Kubiak and M. R. Smyth, Anal. Chim. Acta, 229, 139-143 (1990). https://doi.org/10.1016/S0003-2670(00)85119-3
  31. F. Mazzei, F.; F. Botre, M. Lanzi, G. Lorenti and F. Porcelli, Sens. Actuators B., 7, 427-430 (1992). https://doi.org/10.1016/0925-4005(92)80337-W
  32. T. C. Tan and Y. Chen, Sens. Actuators B., 17, 101-107 (1994). https://doi.org/10.1016/0925-4005(94)87036-5
  33. Y. Chen and T. C. Tan, Sens. Actuators B., 28, 39-48 (1995). https://doi.org/10.1016/0925-4005(94)01530-U
  34. N. H. Horowitz, M. Fling and G. Horn, Methods in Enzymology, Academic press, New York, Vol. XVIIA, pp 615-620 (1970).
  35. F. Ortega and E. Domnguez, J. Biotechnol., 31, 289-300 (1993). https://doi.org/10.1016/0168-1656(93)90075-X