DOI QR코드

DOI QR Code

QSPR analysis for predicting heat of sublimation of organic compounds

유기화합물의 승화열 예측을 위한 QSPR분석

  • Received : 2015.04.24
  • Accepted : 2015.05.12
  • Published : 2015.06.25

Abstract

The heat of sublimation (HOS) is an essential parameter used to resolve environmental problems in the transfer of organic contaminants to the atmosphere and to assess the risk of toxic chemicals. The experimental measurement of the heat of sublimation is time-consuming, expensive, and complicated. In this study, quantitative structural property relationships (QSPR) were used to develop a simple and predictive model for measuring the heat of sublimation of organic compounds. The population-based forward selection method was applied to select an informative subset of descriptors of learning algorithms, such as by using multiple linear regression (MLR) and the support vector machine (SVM) method. Each individual model and consensus model was evaluated by internal validation using the bootstrap method and y-randomization. The predictions of the performance of the external test set were improved by considering their applicability to the domain. Based on the results of the MLR model, we showed that the heat of sublimation was related to dispersion, H-bond, electrostatic forces, and the dipole-dipole interaction between inter-molecules.

Keywords

Heat of sublimation;QSPR;MLR;SVM;consensus model

References

  1. W. Acree and J. S. Chickos, J. Phys. Chem. Ref. Data, 39(4), 043101 (2010). https://doi.org/10.1063/1.3309507
  2. M. A. V. Roux, M. Temprado, J. S. Chickos and Y. Nagano, J. Phys. Chem. Ref. Data, 37(4), 1855-1996 (2008). https://doi.org/10.1063/1.2955570
  3. PreADMET Ver.2.0.2.0, BMDRC: Seoul Korea, 2007.

  4. G. Schneider, W. Neidhart, T. Giller and G. Schmid, Angew. Chem. Int. Ed. Engl., 38(19), 2894-2896 (1999). https://doi.org/10.1002/(SICI)1521-3773(19991004)38:19<2894::AID-ANIE2894>3.0.CO;2-F
  5. RapidMiner Ver.5.3.012, Rapid-I: Stockumer, Germany.

  6. C. Cortes and V. Vapnik, Mach. Learn., 20(3), 273-297 (1995).
  7. B. Schölkopf, A. J. Smola, R. C. Williamson,and P. L. Bartlett, Neural Comput., 12(5), 1207-1245 (2000). https://doi.org/10.1162/089976600300015565
  8. E. H. Jean, J. H. J. Park, Jin Hee and S. K. Lee, Anal. Sci. Technol., 24(6), 533-543 (2011). https://doi.org/10.5806/AST.2011.24.6.533
  9. I. S. Song, J. Y. Cha and S. K. Lee, Anal. Sci. Technol., 24(6), 544-555 (2011). https://doi.org/10.5806/AST.2011.24.6.544
  10. A. Tropsha, P. Gramatica and V. K. Gombar, QSAR Combi. Sci., 22(1), 69-77 (2003). https://doi.org/10.1002/qsar.200390007
  11. K. Nakajoh, E. Shibata, T. Todoroki, A. Ohara, K. Nishizawa and T. Nakamura, Environ. Toxicol. Chem., 25(2), 327-336 (2006). https://doi.org/10.1897/05-215R.1
  12. P. Politzer, Y. Ma, P. Lane and M. C. Concha, Int. J. Quantum Chem, 105(4), 341-347 (2005). https://doi.org/10.1002/qua.20709
  13. F. Gharagheizi, P. Ilani-Kashkouli, W. E. Acree, A. H. Mohammadi and D. Ramjugernath, Fluid Phase Equilib., 354, 265-285 (2013). https://doi.org/10.1016/j.fluid.2013.06.046
  14. F. Gharagheizi, Thermochim. Acta, 469(1-2), 8-11 (2008). https://doi.org/10.1016/j.tca.2007.12.005

Cited by

  1. QSPR model for the boiling point of diverse organic compounds with applicability domain vol.28, pp.4, 2015, https://doi.org/10.5806/AST.2015.28.4.270