DOI QR코드

DOI QR Code

Photoluminescence analysis of Lewis base coordinate europium(III) β-diketonate complex

유로퓸(III) β-디케토네이트 착물의 루이스 염기 배위에 따른 발광 특성 분석

  • Sung-Hwan, Lee (Inorganic and Organometallic Chemistry Lab., Department of Chemistry, Hannam University) ;
  • Gyu-Hwan, Lee (Inorganic and Organometallic Chemistry Lab., Department of Chemistry, Hannam University)
  • Received : 2015.06.08
  • Accepted : 2015.06.15
  • Published : 2015.06.25

Abstract

Lanthanide complexes have attracted much attention because of their unique light emitting property. The light-emitting efficiencies of europium β-diketonate complexes were compared with those of complexes coordinated by the ligands of amines or phosphine oxides. The results demonstrated that the complexes that were coordinated by phosphine oxides had higher light-conversion performance than those coordinated by amines. The highest light-emitting efficiency was observed when the ligand of trioctylphosphine oxide was coordinated. In order to determine the coordination equivalency of trioctylphosphine oxide in the above complexes, 31P-NMR and their photoluminescence spectra were measured. The findings showed that the europium β-diketonate complex had one or two coordination equivalencies of trioctylphosphine oxide according to the steric hindrance of its original ligand.

Keywords

europium β-diketonate;EuFOD;lanthanide;down shifting;trioctylphosphine oxide

References

  1. G. Vicentini, L. B. Zinner, J. Zukerman-Schpector and Zinner, K. Coordination Chem. Rev., 196, 353-382 (2000). https://doi.org/10.1016/S0010-8545(99)00220-9
  2. N. B. Lima, S. M. Goncalves, S. A. Junior and A. M. Simas, Sci. Reports., 3, 2395-2302 (2013). https://doi.org/10.1038/srep02395
  3. L. B. Melby, N. J. Rose, E. Abramson and J. C. Caris, J. Am. Chem. Soc., 86, 5117-5125 (1964). https://doi.org/10.1021/ja01077a015
  4. S. M. Mattson, E. J. Abramson and L. C. Thomson, J. less-common Metals., 112, 373-380 (1985). https://doi.org/10.1016/0022-5088(85)90044-X
  5. A. T. Kandil and K. Farah, J. Inorg. Nucl. Chem., 42, 1491-1494 (1980). https://doi.org/10.1016/0022-1902(80)80118-7
  6. H. Iwanaga, A. Amano, F. Furuya and Y. Yamasaki, Jpn. J. Apply. Phys., 45, 558-562 (2006). https://doi.org/10.1143/JJAP.45.558
  7. C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, V. Svrcek, del C. Canizo and I. Tobias, Sol. Energy Mater. Sol. Cells., 91, 238-249 (2007). https://doi.org/10.1016/j.solmat.2006.09.003
  8. B. S. Richards, Sol. Energy Mater. Sol. Cells., 90, 2329-2337 (2006). https://doi.org/10.1016/j.solmat.2006.03.035
  9. G. Blasse, J. Chem. Phys., 45, 2356-2360 (1966). https://doi.org/10.1063/1.1727946
  10. T. Trupke, M. A. Green and P. Wurfel, J. Appl. Phys., 92, 1668-1674 (2002). https://doi.org/10.1063/1.1492021
  11. J. Chrysochoos, J. Chem. Phys., 60, 1110-1112 (1974). https://doi.org/10.1063/1.1681121
  12. M. Montalti, L. Prodi, N. Zaccheroni, L. Charbonniere, L. Douce and R. Ziessel, J. Am. Chem. Soc., 123, 12694-12695 (2001). https://doi.org/10.1021/ja0118688
  13. B. L. An, J. X. Shi, W. K. Wong, K. W. Cheah, R. H. Li, Y. S. Yanf and M. L. Gong, J. Lumin, 99, 155-160 (2002). https://doi.org/10.1016/S0022-2313(02)00332-0
  14. K. Binnemans, Chem. Rev., 109, 4283-4374 (2009). https://doi.org/10.1021/cr8003983
  15. H. R. Li, J. Lin, H. J. Zhang, L. S. Fu, Q. G. Meng and S. B. Wang, Chem. Mater., 14, 3651-3655 (2002). https://doi.org/10.1021/cm0116830
  16. O. Laporte and W. F. Meggers, J. Optical Society Am, 11, 459-462 (1925). https://doi.org/10.1364/JOSA.11.000459
  17. S. I. Weissman, J. Chem. Phys., 10, 214-217 (1942). https://doi.org/10.1063/1.1723709
  18. A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, A. S. de Sousa, J. A. Gareth Williams and M. Woods, J. Chem. Soc. Perkin Trans., 2, 493-503 (1999).
  19. A. I. Voloshin, N. M. Shavaleev and V. P. Kazakov, J. Luminescence., 93, 191-197 (2001). https://doi.org/10.1016/S0022-2313(01)00200-9
  20. A. H. Bruder, S. R. Tanny, H. A. Rockefeller and C. S. Springer, Inorg. Chem., 13, 880-885 (1974). https://doi.org/10.1021/ic50134a025
  21. M. Haase and H. Schaefer, Angew. Chem., Int. Ed., 50, 5808-5829 (2011). https://doi.org/10.1002/anie.201005159
  22. A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer and H. U. Gudel, J. Appl. Phys. Lett., 86, 013505 (2005). https://doi.org/10.1063/1.1844592
  23. M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Luthi and M. P. Hehlen, Phys. Rev., 61, 3337-3346 (2000). https://doi.org/10.1103/PhysRevB.61.3337