Photoluminescence analysis of Lewis base coordinate europium(III) β-diketonate complex

유로퓸(III) β-디케토네이트 착물의 루이스 염기 배위에 따른 발광 특성 분석

  • Sung-Hwan, Lee (Inorganic and Organometallic Chemistry Lab., Department of Chemistry, Hannam University) ;
  • Gyu-Hwan, Lee (Inorganic and Organometallic Chemistry Lab., Department of Chemistry, Hannam University)
  • Received : 2015.06.08
  • Accepted : 2015.06.15
  • Published : 2015.06.25


Lanthanide complexes have attracted much attention because of their unique light emitting property. The light-emitting efficiencies of europium β-diketonate complexes were compared with those of complexes coordinated by the ligands of amines or phosphine oxides. The results demonstrated that the complexes that were coordinated by phosphine oxides had higher light-conversion performance than those coordinated by amines. The highest light-emitting efficiency was observed when the ligand of trioctylphosphine oxide was coordinated. In order to determine the coordination equivalency of trioctylphosphine oxide in the above complexes, 31P-NMR and their photoluminescence spectra were measured. The findings showed that the europium β-diketonate complex had one or two coordination equivalencies of trioctylphosphine oxide according to the steric hindrance of its original ligand.


europium β-diketonate;EuFOD;lanthanide;down shifting;trioctylphosphine oxide


  1. G. Vicentini, L. B. Zinner, J. Zukerman-Schpector and Zinner, K. Coordination Chem. Rev., 196, 353-382 (2000).
  2. N. B. Lima, S. M. Goncalves, S. A. Junior and A. M. Simas, Sci. Reports., 3, 2395-2302 (2013).
  3. L. B. Melby, N. J. Rose, E. Abramson and J. C. Caris, J. Am. Chem. Soc., 86, 5117-5125 (1964).
  4. S. M. Mattson, E. J. Abramson and L. C. Thomson, J. less-common Metals., 112, 373-380 (1985).
  5. A. T. Kandil and K. Farah, J. Inorg. Nucl. Chem., 42, 1491-1494 (1980).
  6. H. Iwanaga, A. Amano, F. Furuya and Y. Yamasaki, Jpn. J. Apply. Phys., 45, 558-562 (2006).
  7. C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, V. Svrcek, del C. Canizo and I. Tobias, Sol. Energy Mater. Sol. Cells., 91, 238-249 (2007).
  8. B. S. Richards, Sol. Energy Mater. Sol. Cells., 90, 2329-2337 (2006).
  9. G. Blasse, J. Chem. Phys., 45, 2356-2360 (1966).
  10. T. Trupke, M. A. Green and P. Wurfel, J. Appl. Phys., 92, 1668-1674 (2002).
  11. J. Chrysochoos, J. Chem. Phys., 60, 1110-1112 (1974).
  12. M. Montalti, L. Prodi, N. Zaccheroni, L. Charbonniere, L. Douce and R. Ziessel, J. Am. Chem. Soc., 123, 12694-12695 (2001).
  13. B. L. An, J. X. Shi, W. K. Wong, K. W. Cheah, R. H. Li, Y. S. Yanf and M. L. Gong, J. Lumin, 99, 155-160 (2002).
  14. K. Binnemans, Chem. Rev., 109, 4283-4374 (2009).
  15. H. R. Li, J. Lin, H. J. Zhang, L. S. Fu, Q. G. Meng and S. B. Wang, Chem. Mater., 14, 3651-3655 (2002).
  16. O. Laporte and W. F. Meggers, J. Optical Society Am, 11, 459-462 (1925).
  17. S. I. Weissman, J. Chem. Phys., 10, 214-217 (1942).
  18. A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, A. S. de Sousa, J. A. Gareth Williams and M. Woods, J. Chem. Soc. Perkin Trans., 2, 493-503 (1999).
  19. A. I. Voloshin, N. M. Shavaleev and V. P. Kazakov, J. Luminescence., 93, 191-197 (2001).
  20. A. H. Bruder, S. R. Tanny, H. A. Rockefeller and C. S. Springer, Inorg. Chem., 13, 880-885 (1974).
  21. M. Haase and H. Schaefer, Angew. Chem., Int. Ed., 50, 5808-5829 (2011).
  22. A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer and H. U. Gudel, J. Appl. Phys. Lett., 86, 013505 (2005).
  23. M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Luthi and M. P. Hehlen, Phys. Rev., 61, 3337-3346 (2000).