Evaluation of the combustion chamber for burning candle and measuring the emission factor of its’ combustion products

양초 연소 시 발생되는 오염물질 방출계수 측정을 위한 연소실 제작과 평가

  • Lim, Hyung-Jin (Department of Environment, Kangwon National University) ;
  • Kim, Man-Goo (Department of Environment, Kangwon National University)
  • Received : 2015.03.26
  • Accepted : 2015.06.16
  • Published : 2015.06.25


Recently, candles have been widely used to create a romantic atmosphere and to heat tea. In this study, a small combustion chamber for candle was designed using an 0.008 m3 bell jar. The emission factors of combustion products were then measured. The combustion chamber includes a glass dish, which prevents candle flame from affecting the composition of the gas emitted through the exhaust outlet. The outlet in the combustion chamber was designed as a cone shape, and it was lengthened to prevent flow from the outside, which could affect the homogeneous composition of the exhaust gas. The temperature at the outlet of the chamber was 34 ℃~41℃. The major combustion products of the candle, such as such aldehydes and acids, contained oxygen. The mass specific emission rates of benzene, toluene, ethylbenzene, and TVOC were 0.04 μg/g, 0.01 μg/g, 0.02 μg/g, and 3.81, respectively. The mass specific emission rates of formaldehyde, acetaldehyde and benzaldehyde were 4.48 μg/g, 1.09 μg/g, and 0.67 μg/g, respectively. Considering the different compositions of the candle samples, their mass specific emission rates were similar to those obtained by using a large chamber 0.17 m3~50 m3 in size.


candle;combustion chamber;emission factor;volatile organic compound;aldehyde


  1. F. Maupetit and F. Squinazi, Environ. Risques & Sante., 8, 109-118 (2009).
  2. National Candle Association,
  3. KS I 2007, Determination of the emission of formaldehyde and volatile organic compounds from furniture and building related products Large chamber method.

  4. L. Stabile, F. C. Fuoco and G. Buonanno, Build. Environ., 56, 184-191 (2012).
  5. S. Zai, H. Zhen and W. Jia-song, J. Aerosol Sci., 37(11), 1484-1496 (2006).
  6. A. Manoukian, E. Quivet, B. Temime-Roussel,M. Nicolas, F. Maupetit, and H. Wortham. Environ. Sci. Pollut. Res., 20, 4659-4670 (2013).
  7. M. Derudi, S. Gelosa, A. Sliepcevich, A. Cattaneo, R. Rota, D. Cavallo, and G. Nano, Environ. Sci. Pollut. Res., 21, 4320-4330 (2014).
  8. T. Petry, D. Vitale, F. J. Joachim, B. Smith, L. Cruse, R. Mascarenhas, S. Schneider, and M. Singal, Regulatory. toxicol. Pharmacol., 69, 55-70 (2014).
  9. S. Orecchio, Atmos. Environ., 45(10), 1888-1895 (2011).
  10. European Committee for Standardization, CEN TC 369, Candle fire safety, EN 15493:2007 - Specification for fire safety, European Union.

  11. European Committee for Standardization, CEN TC 369, Candle fire safety, EN 15426:2007 - Specification for sooting behaviour, European Union.

  12. Korean Industrial Standards, KS M 2722:2014, Republic of Korea.

  13. S. C. Lee and B. Wang. Atmos, Atmos. Environ., 40(12), 2128-2138 (2006).
  14. M. Ongwandee and W. Pipithakul, J. Environ. Res., 32(1), 69-79 (2010).
  15. M. Derudi, S. Gelosa, A. Sliepcevich, A. Cattaneo, R. Rota, D. Cavallo and G. Nano, Atmos. Environ., 55, 257-262, (2012).
  16. J. J. Xie, X. Wang, G. Sheng, X. Bi and J. Fu, Atmos. Environ., 37(24), 3365-3374 (2003).
  17. K. Slezakova, M. C. Pereira and M. C. Alvim-Ferraz, Atmos. Environ., 43(3), 486-493 (2009).
  18. S. C. Lee, W. Li and L. Yin Chan, Sci. Total Environ., 279(1-3), 181-193 (2001).
  19. S. Taner, B. Pekey and H. Pekey, Sci. Total Environ., 454-455, 78-87 (2013).
  20. ISO 16000-6, Indoor air – Part 6 : Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA® sorbent, thermal desorption and gas chromatography using MS/FID.

  21. Ministry of Environment Notification No. 550(2014. 03. 23.), Republic of Korea.