DOI QR코드

DOI QR Code

ACCRETION FLOW AND DISPARATE PROFILES OF RAMAN SCATTERED O VI λλ 1032, 1038 IN THE SYMBIOTIC STAR V1016 CYGNI

Heo, Jeong-Eun;Lee, Hee-Won

  • Received : 2015.01.20
  • Accepted : 2015.02.26
  • Published : 2015.04.30

Abstract

The symbiotic star V1016 Cygni, a detached binary system consisting of a hot white dwarf and a mass-losing Mira variable, shows very broad emission features at around 6825 Å and 7082 Å, which are Raman scattered O vi λλ 1032, 1038 by atomic hydrogen. In the high resolution spectrum of V1016 Cyg obtained with the Bohyunsan Optical Echelle Spectrograph these broad features exhibit double peak profiles with the red peak stronger than the blue counterpart. However, their profiles differ in such a way that the blue peak of the 7082 feature is relatively weaker than the 6825 counterpart when the two Raman features are normalized to exhibit an equal red peak strength in the Doppler factor space. Assuming that an accretion flow around the white dwarf is responsible for the double peak profiles, we attribute this disparity in the profiles to the local variation of the flux ratio of O vi λλ 1032, 1038 in the accretion flow. A Monte Carlo technique is adopted to provide emissivity maps showing the local emissivity of O vi λ1032 and O vi λ1038 in the vicinity of the white dwarf. We also present a map indicating the differing flux ratios of O vi λλ 1032 and 1038. Our result shows that the flux ratio reaches its maximum of 2 in the emission region responsible for the central trough of the Raman feature and that the flux ratio in the inner red emission region is almost 1. The blue emission region and the outer red emission region exhibit an intermediate ratio around 1.5. We conclude that the disparity in the profiles of the two Raman O vi features strongly implies accretion flow around the white dwarf, which is azimuthally asymmetric.

Keywords

binaries: symbiotic;stars: individual: V1016 Cyg;scattering;accretion, accretion disks;line: profiles

References

  1. Allen, D. A. 1980, Candidate Symbiotic Stars in the Large Magellanic Cloud, ApJ, 20, 131
  2. Angeloni, R., Contini, M., Ciroi, S., & Rafanelli, P. 2010, The Spectral Energy Distribution of D-Type Symbiotic Stars: the Role of Dust Shell, MNRAS, 402, 2075 https://doi.org/10.1111/j.1365-2966.2009.16067.x
  3. Bach, K., & Lee, H.-W. 2014, The Kramers-Heisenberg Formula and the Gunn-Peterson Trough, JKAS, 47, 187
  4. Birriel, J. 2004, Raman-Scattered He II at 4851 Å in the Symbiotic Stars HM Sagittae and V1016 Cygni, ApJ, 612, 1136 https://doi.org/10.1086/422835
  5. Brocksopp, C., Bode, M. F., Eyres, S. P. S., Crocker, M. M., Davis, R., & Taylor, A. R. 2002, The Central Binary and Surrounding Nebular of the Symbiotic Star V1016 Cygni, ApJ, 571, 947 https://doi.org/10.1086/340018
  6. de Val-Borro, M., Karovska, M., & Sasselov, D. 2009, Numerical Simulations of Wind Accretion in Symbiotic Binaries, ApJ, 700, 1148 https://doi.org/10.1088/0004-637X/700/2/1148
  7. Feibelman, W. 1983, Profiles and Intensity Ratios of the C IV λ 1548, 1550 Emission Lines in Planetary Nebulae, A&A, 122, 335
  8. Harries, T. J., & Howarth, I. D. 1997, Raman Scattering in Symbiotic Stars. II. Numerical Models, A&AS, 121, 15
  9. Iben, I. Jr., & Tutukov, A. V. 1984, Supernovae of Type I as End Products of the Evolution of Binaries with Components of Moderate Initial Mass (M not Greater than about 9 Solar Masses), ApJS, 54, 335 https://doi.org/10.1086/190932
  10. Ivison, R. J., Bode, M. F., Roberts, J. A., Meaburn, J., Davis, R. J., Nelson, R. F., & Spencer, R. E. 1991, A Multi-Frequency Study of Symbiotic Stars. I - Near-simultaneous Optical and Radio Observations, MNRAS, 249, 374 https://doi.org/10.1093/mnras/249.2.374
  11. Lee, H.-W., & Park, M.-G. 1999, Toward the Evidence of the Accretion Disk Emission in the Symbiotic Star RR Telescopii, ApJ, 515, L89 https://doi.org/10.1086/311977
  12. Kang, E.-H., & Lee, H.-W. 2008, Effects of Collisional DeExcitation on the Resonance Doublet Flux Ratios in Symbiotic Stars and Planetary Nebulae, JKAS, 41, 49
  13. Lee, H.-W. 2012, Raman Scattered He II 4332 in the Symbiotic Star V1016 Cygni, ApJ, 750, 127 https://doi.org/10.1088/0004-637X/750/2/127
  14. Lee, H.-W., & Kang, S. 2007, Raman-scattered O VI 6825 and the Accretion Disk Emission Model in the Symbiotic Stars V1016 Cygni and HM Sagittae, ApJ, 669, 1156 https://doi.org/10.1086/521719
  15. Lee, H.-W., Heo, J.-E., & Lee, B.-C. 2014, Raman-Scattered Ne VII 973 at 4881 in the Symbiotic Star V1016 Cygni, MNRAS, 442, 1956 https://doi.org/10.1093/mnras/stu968
  16. Livio, M., Prialnik, D., & Regev, O. 1989, Accretion onto Hot White Dwarfs in Relation to Symbiotic Novae, ApJ, 341, 299 https://doi.org/10.1086/167494
  17. Lorenzetti, D., Saraceno, P., & Strafella, F. 1985, On the IR Variability of Symbiotic Stars - The Case of V1016 Cygni, HM Sagittae and V1329 Cygni, ApJ, 298, 350 https://doi.org/10.1086/163616
  18. Mastrodemos, N., & Morris, M. 1998, Bipolar Preplanetary Nebulae: Hydrodynamics of Dusty Winds in Binary Systems. I. Formation of Accretion Disks, ApJ, 497, 303 https://doi.org/10.1086/305465
  19. Marsh, T. R., & Horne, K. 1988, Images of Accretion Discs. II - Doppler Tomography, MNRAS, 235, 269 https://doi.org/10.1093/mnras/235.1.269
  20. Mikolajewska, M. 2012, Symbiotic Stars: Observations Confront Theory, Baltic Astron., 21, 5
  21. Mikolajewska, M., Friedjung, M., & Quiroga, C. 2006, Line Formation Regions of the UV Spectrum of CI Cygni, A&A, 460, 191
  22. Mikolajewska, M., & Kenyon, S. 1992, On the Nova-Like Eruptions of Symbiotic Binaries, MNRAS, 256, 177 https://doi.org/10.1093/mnras/256.2.177
  23. Perlmutter, S., et al. 1998, Discovery of a Supernova Explosion at Half the Age of the Universe, Nature, 391, 51 https://doi.org/10.1038/34124
  24. McCuskey, S. 1965, Activity in H Emission Object, IAU Circ., 1916, 0
  25. Nussbaumer, H., Schmid, H. M., & Vogel, M. 1989, Raman Scattering as a Diagnostic Possibility in Astrophysics, A&A, 211, L27
  26. Parimucha, S., Chochol, D., Pribulla, T., Buson, L. M., & Vittone, A. A. 2003, Fifteen-Year Period of Activity in the Symbiotic Nova V1016 Cyg, ASPC, 303, 80
  27. Schild, H., & Schmid, H. M. 1996, Spectropolarimetry of Symbiotic Stars. On the Binary Orbit and the Geometric Structure of V1016 Cygni, A&A, 310, 211
  28. Schmid, H. M. 1989, Identification of the Emission Bands at 6830, 7088 Å A&A, 211, L31
  29. Schmid, H. M. 1996, Simulations of the Raman-Scattered OVI Emission Lines in Symbiotic Stars, MNRAS, 282, 511 https://doi.org/10.1093/mnras/282.2.511
  30. Schmid, H. M., & Schild, H. 2002, Orbital Motion in Symbiotic Mira Systems, A&A, 395, 117
  31. Schmid, H. M., et al. 1999, ORFEUS Spectroscopy of the O BT VI Lines in Symbiotic Stars and the Raman Scattering Process, A&A, 348, 950
  32. Solf, J. 1983, Optical Confirmation of a Very Compact Bipolar Nebula Associated with the Symbiotic Star V1016 Cygni, ApJ, 266, L113 https://doi.org/10.1086/183989
  33. van Groningen, E. 1993, Further Evidence for Raman Scattering in Rr-Telescopii, MNRAS, 264, 975 https://doi.org/10.1093/mnras/264.4.975
  34. Warner, B. 1995, Cataclysmic Variable Stars (Cambridge: Cambridge University Press)
  35. Watson, S. K., Eyres, S. P. S., Davis, R. J., Bode, M. F., Richards, A. M. S., & Kenny, H. T. 2000, Colliding Winds in V1016 Cygni, MNRAS, 311, 449 https://doi.org/10.1046/j.1365-8711.2000.02988.x
  36. Whitelock, P. 1987, Symbiotic Miras, PASP, 99, 573 https://doi.org/10.1086/132019

Cited by

  1. Profile disparity of Raman-scattered O VI in symbiotic stars vol.728, pp.4, 2016, https://doi.org/10.1088/1742-6596/728/4/042007
  2. Raman-scattered O VI λ1032 and He II λ1025 and Bipolar Outflow in the Symbiotic Star V455 Sco vol.728, 2016, https://doi.org/10.1088/1742-6596/728/7/072014
  3. A MONTE CARLO STUDY OF FLUX RATIOS OF RAMAN SCATTERED O vi FEATURES AT 6825 AND 7082 Å IN SYMBIOTIC STARS vol.833, pp.1, 2016, https://doi.org/10.3847/1538-4357/833/1/75
  4. AG Pegasi – now a classical symbiotic star in outburst? vol.462, pp.4, 2016, https://doi.org/10.1093/mnras/stw2012
  5. Formation of broad Balmer wings in symbiotic stars vol.728, 2016, https://doi.org/10.1088/1742-6596/728/7/072016
  6. A PROFILE ANALYSIS OF RAMAN-SCATTERED O VI BANDS AT 6825 Å AND 7082 Å IN SANDULEAK’S STAR vol.833, pp.2, 2016, https://doi.org/10.3847/1538-4357/833/2/286
  7. H α and H β Raman scattering line profiles of the symbiotic star AG Pegasi vol.475, pp.4, 2018, https://doi.org/10.1093/mnras/sty050
  8. Surveys vol.240, pp.2, 2019, https://doi.org/10.3847/1538-4365/aaf88c