DOI QR코드

DOI QR Code

A NEW HARDWARE CORRELATOR IN KOREA: PERFORMANCE EVALUATION USING KVN OBSERVATIONS

  • Lee, Sang-Sung ;
  • Oh, Chung Sik ;
  • Roh, Duk-Gyoo ;
  • Oh, Se-Jin ;
  • Kim, Jongsoo ;
  • Yeom, Jae-Hwan ;
  • Kim, Hyo Ryoung ;
  • Jung, Dong-Gyu ;
  • Byun, Do-Young ;
  • Jung, Taehyun ;
  • Kawaguchi, Noriyuki ;
  • Shibata, Katsunori M. ;
  • Wajima, Kiyoaki
  • Received : 2015.02.09
  • Accepted : 2015.03.16
  • Published : 2015.04.30

Abstract

We report results of the performance evaluation of a new hardware correlator in Korea, the Daejeon correlator, developed by the Korea Astronomy and Space Science Institute (KASI) and the National Astronomical Observatory of Japan (NAOJ). We conduct Very Long Baseline Interferometry (VLBI) observations at 22 GHz with the Korean VLBI Network (KVN) in Korea and the VLBI Exploration of Radio Astrometry (VERA) in Japan, and correlated the aquired data with the Daejeon correlator. For evaluating the performance of the new hardware correlator, we compare the correlation outputs from the Daejeon correlator for KVN observations with those from a software correlator, the Distributed FX (DiFX). We investigate the correlated flux densities and brightness distributions of extragalactic compact radio sources. The comparison of the two correlator outputs shows that they are consistent with each other within < 8%, which is comparable with the amplitude calibration uncertainties of KVN observations at 22 GHz. We also find that the 8% difference in flux density is caused mainly by (a) the difference in the way of fringe phase tracking between the DiFX software correlator and the Daejeon hardware correlator, and (b) an unusual pattern (a double-layer pattern) of the amplitude correlation output from the Daejeon correlator. The visibility amplitude loss by the double-layer pattern is as small as 3%. We conclude that the new hardware correlator produces reasonable correlation outputs for continuum observations, which are consistent with the outputs from the DiFX software correlator.

Keywords

Techniques: interferometric;Instrumentation: interferometers;Radio continuum: galaxies;Masers

References

  1. Clark, B. G. 1973, The NRAO Tape-Recorder Interferometer System, Proc. IEEE, 61, 1242 https://doi.org/10.1109/PROC.1973.9253
  2. Bare, C., Clark, B. G., & Kellermann, K. I. 1967, Interferometer Experiment with Independent Local Oscillators, Science, 157, 189 https://doi.org/10.1126/science.157.3785.189
  3. Carlson, B. R., Dewdney, P. E., Burgess, T. A., et al. 1999, The S2 VLBI Correlator: A Correlator for Space VLBI and Geodetic Signal Processing, PASP, 111, 1025 https://doi.org/10.1086/316415
  4. Casse, J. L. 1999, The European VLBI Network MkIV Data Processor, New A Rev., 43, 503 https://doi.org/10.1016/S1387-6473(99)00042-1
  5. Clark, B. G., Cohnen, M. H., & Jauncey, D. L. 1967, Angular Size of 3C 273B, ApJ, 149, L151 https://doi.org/10.1086/180078
  6. Horiuchi, S., Kameno, S., Nan, R., et al. 2000, Imaging Capability of the Mitaka VSOP Correlator, Adv. Space Res., 26, 625 https://doi.org/10.1016/S0273-1177(99)01180-1
  7. Deller, A. T., Tingay, S. J., Bailes, M., et al. 2017, DiFX: A Software Correlator for Very Long Baseline Interferometry Using Multiprocessor Computing Environments, PASP, 119, 318
  8. Deller, A. T., Brisken, W. F., Phillips, C. J., et al. 2011, DiFX-2: A More Flexible, Efficient, Robust, and Powerful Software Correlator, PASP, 123, 275 https://doi.org/10.1086/658907
  9. Greisen, E. W. 2009,The FITS Interferometry Data Interchange Convention, AIPS Memo, 114
  10. Iguchi, S., Kawaguchi, N., Murata, Y., et al. 2000, Development and Performance of the Real-Time VLBI Correlator (RVC), IEICE Trans. Commun., E83-B, 2527
  11. Kondo, T., Koyama, Y., Nakajima, J., et al. 2003, Internet VLBI System Based on the PC-VSSP (IP-VLBI) Board, in ASP Conf. Ser. 306, New Technologies in VLBI, ed. Y. C. Minh (San Francisco: ASP), 205
  12. Lee, S.-S., Byun, D.-Y., Oh, C. S., et al. 2011, Single-Dish Performance of KVN 21 m Radio Telescopes: Simultaneous Observations at 22 and 43 GHz, PASP, 123, 1398 https://doi.org/10.1086/663326
  13. Lee, S.-S., Petrov, L., Byun, D.-Y., et al. 2014, Early Science with the Korean VLBI Network: Evaluation of System Performance, AJ, 147, 77 https://doi.org/10.1088/0004-6256/147/4/77
  14. Lobanov, A. P., Krichbaum, T. P., Witzel, A., et al. 2006, Dual-Frequency VSOP Imaging of the Jet in S5 0836+710, PASJ, 58, 253 https://doi.org/10.1093/pasj/58.2.253
  15. Moran, J. M., Crowther, P. P., Burke, B. F., et al. 1967, Spectral Line Interferometry with Independent Time Standards at Stations Separated by 845 Kilometers, Science, 157, 676 https://doi.org/10.1126/science.157.3789.676
  16. Napier, P. J., Bargri, D. S., Clark, B. G., et al. 1994, The Very Long Baseline Array, Proc. IEEE, 82, 658 https://doi.org/10.1109/5.284733
  17. Shepherd, M. C., Pearson, T. J., & Taylor, G. B. 1994, DIFMAP: an Interactive Program for Synthesis Imaging, BAAS, 26, 987
  18. Petrov, L., Lee, S. S., Kim, J., et al. 2012, Early Science with the Korean VLBI Network: The QCAL-1 43 GHz Calibrator Survey, AJ, 144, 150 https://doi.org/10.1088/0004-6256/144/5/150
  19. Rogers, A. E. E., Cappallo, R. J., Hinteregger, H. F., et al. 1983, Very-Long-Baseline Radio Interferometry - The Mark III System for Geodesy, Astrometry, and Aperture Synthesis, Science, 219, 51 https://doi.org/10.1126/science.219.4580.51
  20. Ryle, M., & Hewish, A. 1960, The Synthesis of Large Radio Telescopes, MNRAS, 120, 220 https://doi.org/10.1093/mnras/120.3.220
  21. Shibata, K. M., Kameno, S., Inoue, M., et al. 1998, Mitaka Correlator for the Space VLBI, in ASP Conf. Ser. 144, Radio Emission from Galactic and Extragalactic Compact Sources, ed. J. A. Zensus et al. (San Francisco: ASP), 413
  22. Thompson, A. R. 1999, in Synthesis Imaging in Radio Astronomy II, eds. G. B. Taylor, C. L. Carilli, & R. A. Perley, ASP Conf. Ser., 180, 11
  23. Whitney, A. R. 1993, The Mark IV VLBI Data-Acquisition and Correlation System, in IAU Symp. 156, Developments in Astrometry and Their Impact on Astrophysics and Geodynamics, ed. I. I. Mueller & B. Kolaczek (Dordrecht: Kluwer), 151
  24. Whitney, A. R. 2002, Mark 5 Disc-Based Gbps VLBI Data System, in Proc. 6th European VLBI Network Symp., New Developments in VLBI Science and Technology, ed. E. Ros et al. (Bonn: Max-Planck-Institut für Radioastronomie), 41
  25. Wietfeldt, R., Baer, D., Cannon, W. H., et al. 1996, The S2 Very Long Baseline Interferometry Tape Recorder, IEEE Trans. Instrumentation and Measurement, 45, 923 https://doi.org/10.1109/19.543987
  26. Wilson, W., Roberts, P., & Davis, E. 1996, in Proc. 4th ATP workshop, ed. E. A. King (Sydney: ATNF/CSIRO), 16

Cited by

  1. INTERFEROMETRIC MONITORING OF GAMMA-RAY BRIGHT AGNs. I. THE RESULTS OF SINGLE-EPOCH MULTIFREQUENCY OBSERVATIONS vol.227, pp.1, 2016, https://doi.org/10.3847/0067-0049/227/1/8
  2. SPATIALLY RESOLVED HCN ABSORPTION FEATURES IN THE CIRCUMNUCLEAR REGION OF NGC 1052 vol.830, pp.1, 2016, https://doi.org/10.3847/2041-8205/830/1/L3
  3. Interferometric Monitoring of Gamma-Ray Bright AGNs: S5 0716+714 vol.841, pp.2, 2017, https://doi.org/10.3847/1538-4357/aa72f7
  4. VLBI observations of flared optical quasar CGRaBS J0809+5341 vol.68, pp.5, 2016, https://doi.org/10.1093/pasj/psw067
  5. Millimeter VLBI observations of Sgr A* with KaVA and KVN vol.11, pp.S322, 2016, https://doi.org/10.1017/S1743921316012497
  6. Pilot KaVA monitoring on the M 87 jet: Confirming the inner jet structure and superluminal motions at sub-pc scales vol.69, pp.4, 2017, https://doi.org/10.1093/pasj/psx054
  7. A comparative study of amplitude calibrations for the East Asia VLBI Network: A priori and template spectrum methods vol.69, pp.6, 2017, https://doi.org/10.1093/pasj/psx090
  8. Evidence of Jet–Clump Interaction: A Flip of the Radio Jet Head of 3C 84 vol.864, pp.2, 2018, https://doi.org/10.3847/1538-4357/aad6e3
  9. Long-term millimeter VLBI monitoring of M 87 with KVN at milliarcsecond resolution: nuclear spectrum vol.610, pp.1432-0746, 2018, https://doi.org/10.1051/0004-6361/201732421
  10. Absorption Line Associated with the Circumnuclear Torus of NGC 1052 vol.872, pp.2, 2019, https://doi.org/10.3847/2041-8213/ab0425

Acknowledgement

Grant : 우주탄생과 진화연구