DOI QR코드

DOI QR Code

DYNAMICAL EVOLUTION OF SUPERNOVA REMNANTS BREAKING THROUGH MOLECULAR CLOUDS

  • Cho, Wankee ;
  • Kim, Jongsoo ;
  • Koo, Bon-Chul
  • Received : 2014.09.24
  • Accepted : 2015.03.17
  • Published : 2015.04.30

Abstract

We carry out three-dimensional hydrodynamic simulations of the supernova remnants (SNRs) produced inside molecular clouds (MCs) near their surface using the HLL code (Harten et al. 1983). We explore the dynamical evolution and the X-ray morphology of SNRs after breaking through the MC surface for ranges of the explosion depths below the surface and the density ratios of the clouds to the intercloud media (ICM). We find that if an SNR breaks out through an MC surface in its Sedov stage, the outermost dense shell of the remnant is divided into several layers. The divided layers are subject to the Rayleigh-Taylor instability and fragmented. On the other hand, if an SNR breaks through an MC after the remnant enters the snowplow phase, the radiative shell is not divided to layers. We also compare the predictions of previous analytic solutions for the expansion of SNRs in stratified media with our onedimensional simulations. Moreover, we produce synthetic X-ray surface brightness in order to research the center-bright X-ray morphology shown in thermal composite SNRs. In the late stages, a breakout SNR shows the center-bright X-ray morphology inside an MC in our results. We apply our model to the observational results of the X-ray morphology of the thermal composite SNR 3C 391.

Keywords

Hydrodynamics;methods: numerical;ISM: supernova remnants and clouds

References

  1. Becker, R. H., White, R. L., & Helfand, D. J. 1995, The FIRST Survey: Faint Images of the Radio Sky at Twenty Centimeters, ApJ, 450, 559 https://doi.org/10.1086/176166
  2. Arthur, S. J., & Falle, A. E. G. 1991, Multigrid Methods Applied to an Explosion at a Plane Density Interface, MNRAS, 251, 93 https://doi.org/10.1093/mnras/251.1.93
  3. Anders, E., & Grevesse, N. 1989, Abundances of the Elements: Meteoritic and Solar, Geochim. Cosmochim. Acta, 53, 197 https://doi.org/10.1016/0016-7037(89)90286-X
  4. Cornett, R. H., Chin, G., & Knapp, G. R. 1977, Observations of CO Emission from a Dense Cloud Associated with the Supernova Remnant IC 443, A&A, 54, 889
  5. Denoyer, L. K. 1979, Discovery of Shocked CO within a Supernova Remnant, ApJl, 232, L165 https://doi.org/10.1086/183057
  6. Dohm-Palmer, R. C., & Jones, T. W. 1996, Young Supernova Remnants in Nonuniform Media, ApJ, 471, 279 https://doi.org/10.1086/177968
  7. Chen, Y., & Slane, P. O. 2001, ASCA Observations of the Thermal Composite Supernova Remnant 3C 391, ApJ, 563, 202 https://doi.org/10.1086/323886
  8. Chen, Y., Slane, P. O., & Wang, Q. D. 2004, A Chandra ACIS View of the Thermal Composite Supernova Remnant 3C 391, ApJ, 616, 885 https://doi.org/10.1086/425152
  9. Chen, Y., Su, Y., Slane, P. O., & Wang, Q. D. 2005, Chandra Spectroscopy of Supernova Remnant 3C 391, JKAS, 38, 211
  10. Cioffi, D. F., Mckee, C. F., & Bertshinger, E. 1988, Dynamics of Radiative Supernova Remnants, ApJ, 334, 252 https://doi.org/10.1086/166834
  11. Cox, D. P., Shelton, R. L., Maciejewski, W., Smith, R. K., Plewa, T., Pawl, A., & Rózyczka, M. 1999, Modeling W44 as a Supernova Remnant in a Density Gradient with a Partially Formed Dense Shell and Thermal Conduction in the Hot Interior. I. The Analytical Model, ApJ, 524, 179 https://doi.org/10.1086/307781
  12. Falle, S. A. E. G., & Garlick, A. R. 1982, A model of the Cygnus Loop, MNRAS, 115, 247
  13. Koo, B.-C., & Mckee, C. F., 1990, Dynamics of Adiabatic Blast Waves in Media of Finite Mass, ApJ, 354, 513 https://doi.org/10.1086/168712
  14. Ferreira, S. E. S., & de Jagar, O. C. 2008, Supernova Remnant Evolution in Uniform and Non-Uniform Media, A&A, 478, 17
  15. Harten, A., Lax, P. D., & van Leer, B. 1983, On Upstream Differencing and Godunov Type Methods for Hyperbolic Conservation Laws, SIAM Rev., 25(1), 35-61 https://doi.org/10.1137/1025002
  16. Jiang, B., Chen, Y., Wang, J., Wang, J., Su, Y., Zhou, X., Safi-Harb, S., & Delaney, T. 2010, Cavity of Molecular Gas Associated with Supernova Remnant 3C 397, ApJ, 712, 1147 https://doi.org/10.1088/0004-637X/712/2/1147
  17. Koo, B.-C., & Kang, J.-H. 2004, Visibility of Old Supernova Remnants in HI 21-cm Emission Line, MNRAS, 349, 983 https://doi.org/10.1111/j.1365-2966.2004.07579.x
  18. McKee, C. F., & Ostriker, J. P. 1977, A Theory of the Interstellar Medium - Three Components Regulated by Supernova Explosions in an Inhomogeneous Substrate, ApJ, 218, 148 https://doi.org/10.1086/155667
  19. Petruk, O. 2001, Thermal X-Ray Composites as an Effect of Projection, A&A, 371, 267
  20. Raymond, J. C., & Smith, B. W. 1977, Soft X-Ray Spectrum of a Hot Plasma, ApJS, 35, 419 https://doi.org/10.1086/190486
  21. Reynolds, S. P., & Moffett, D. A., 1993, High-Resolution Radio Observations of the Supernova Remnant 3C 391 - Possible Breakout Morphology, AJ, 105, 2226 https://doi.org/10.1086/116600
  22. Rho, J., & Peter, R. 1998, Mixed-Morphology Supernova Remnants, ApJ, 503, L167 https://doi.org/10.1086/311538
  23. Sánchez-salcedo, F. J., Vázquez-Semadini, E., & Gazol, A. 2002, The Nonlinear Development of the Thermal Instability in the Atomic Interstellar Medium and Its Interaction with Random Fluctuations, ApJ, 577, 768 https://doi.org/10.1086/342223
  24. Sedov, L. I. 1946, Propagation of Strong Shock Waves, Prikl. Mat. Mekh., 10, 241
  25. Shull, J. M. 1980, The Signature of a Buried Supernova, ApJ, 237, 769 https://doi.org/10.1086/157924
  26. Seward, F. D. 1985, Comments Astrophys. XI, 1, 15
  27. Seward, F. D. 1999, Allens Astrophysical Quantities, 4th edition, ed. by A. N. Cox, 195
  28. Shapiro, R. P., & Moore, R. T. 1976, Time-Dependent Radiative Cooling of a Hot, Diffuse Cosmic Gas, and the Emergent X-Ray Spectrum, ApJ, 207, 460 https://doi.org/10.1086/154515
  29. Sod, G. A. 1978, A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws, J. Comput. Phys., 27, 1 https://doi.org/10.1016/0021-9991(78)90023-2
  30. Taylor, G. I. 1950, The Formation of a Blast Wave by a Very Intense Explosion. I. Theoretical Discussion, Proc. Roy. Soc. London A, 201, 159 https://doi.org/10.1098/rspa.1950.0049
  31. Tenorio-Tagle, G., Bodenheimer, P., & Yorke, H. W. 1985, Non-Spherical Supernova Remnants. II - The Interaction of Remnants with Molecular Clouds, A&A, 145, 70
  32. Tilley, D. A., Balsara, D. S., & Howk, J. C. 2006, Simulations of Mixed-Morphology Supernova Remnants with Anisotropic Thermal Conduction, MNRAS, 371, 1106 https://doi.org/10.1111/j.1365-2966.2006.10747.x
  33. Velázquez, P., de la Fuente, E., Rosado, M., & Raga, A. C. 2001, A Single Explosion Model for the Supernova Remnant 3C 400.2, A&A, 377, 1136
  34. Wang, Z. R., & Seward, F. D. 1984, X-Rays from the SNR 3C 391, ApJ, 279, 705 https://doi.org/10.1086/161935
  35. Wheeler, J. C., Mazurek, T. J., & Sivaramakrishnan, A. 1980, Supernovae in Molecular Clouds, ApJ, 237, 781 https://doi.org/10.1086/157925
  36. White, R. L., & Long, K. S. 1991, Supernova Remnant Evolution in an Interstellar Medium with Evaporating Clouds, ApJ, 373, 543 https://doi.org/10.1086/170073
  37. Wilner, D. J., Reynolds, S. P., & Moffett, D. A. 1998, CO Observations toward the Supernova Remnant 3C 391, AJ, 115, 247 https://doi.org/10.1086/300190
  38. Wolfire, M. G., Mckee, C. F., Tielens, A. G. G. M., & Bakes, E. L. O. 1995, The Neutral Atomic Phases of the Interstellar Medium, ApJ, 443, 512
  39. Xu, J., & Stone, J. M. 1995, The Hydrodynamics of Shock-Cloud Interactions in Three Dimensions, ApJ, 454, 172 https://doi.org/10.1086/176475
  40. Yorke, H. W., Tenorio-Tagle, G., Bodenheimer, P., & Rozyczka, M. 1989, The Combined Role of Ionization and Supernova Explosions in the Destruction of Molecular Clouds, A&A, 216, 207

Cited by

  1. MULTI-WAVELENGTH STUDY OF THE SUPERNOVA REMNANT KES 79 (G33.6+0.1): ON ITS SUPERNOVA PROPERTIES AND EXPANSION INTO A MOLECULAR ENVIRONMENT vol.831, pp.2, 2016, https://doi.org/10.3847/0004-637X/831/2/192