Pseudomonas pseudoalcaligenes KF707에서 유래한 protocatechuate 3,4-dioxygenase 의 저해 및 화학적 메커니즘



Kang, Taekyeong;Kim, Sang Ho;Jung, Mi Ja;Cho, Yong Kweon

  • 투고 : 2015.01.27
  • 심사 : 2015.03.21
  • 발행 : 2015.05.30


Pseudomonas pseudoalcaligenes KF707에서 정제한 protocatechuate 3,4-dioxygenase의 특징을 조사하기 위하여 pH안정성, 화학적 저해, 화학적 수식과 pH의존성 반응 상수에 대한 실험을 수행하였다. 이 효소는 pH 4.5~10.7에서 안정하였다. L-ascorbate와 glutathione은 Kis가 각각 0.17 mM과 0.86 mM인 경쟁적 저해제였으며, DL-dithiothreitol은 Kis 1.57 mM 및 Kii 8.08 mM의 비경쟁적 저해패턴을 나타내었다. Potassium cyanide, p-hydroxybenzoate 및 sodium azide는 Kis가 각각 55.7 mM, 0.22 mM 및15.64 mM이었으며, Kii는 각각94.1 mM, 8.08 mM, 및 662.64 mM인 비경쟁적 저해패턴을 나타내었다. $FeCl_{2}$는 Kis가 $29{\mu}M$로 가장 우수한 경쟁적 저해제였으며, $FeCl_{3}$, $MnCl_{2}$, $CoCl_{2}$, $HgCl_{2}$, $AlCl_{3}$도 각각 Kis가 1.21 mM, 0.85 mM, 3.98 mM, 0.17 mM 및 0.21 mM인 경쟁적 저해패턴을 보였다. 한편, 다른 금속이온들은 비경쟁적 저해패턴을 나타내었다. pH의존성 반응상수의 실험결과로부터 pK 6.2와 9.4의 촉매부위와 pK 5.5와 9.0의 결합부위가 존재함을 알 수 있었다. Lysine, cysteine, tyrosine, carboxyl과 histidine은 각각의 고유한 화학적 수식제에 의해 수식되었는데, 이는 이들 잔기들이 결합과 촉매에 관여한다는 것을 나타낸다. 위 결과를 토대로 화학적 메커니즘을 제시한다.


Chemical modification;pH-dependent kinetic parameters;protocatechuate 3;4-dioxygenase;Pseudomonas pseudoalcaligenes KF707


  1. Sim, H. W., Jung, M. J. and Cho, Y. K. 2013. Purification and Characterization of Protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707. J. Kor. Soc. App. Biol. Chem. 56, 401-408.
  2. True, A. E., Orville, A. M., Pearce, L. L., Lipscomb, J. D. and Que, L. Jr. 1990. An EXAFS study of the interaction of substrate with the ferric active site of protocatechuate 3,4-dioxygenase. Biochemistry 29, 10847-10854.
  3. Valley, M. P., Brown, C. K., Burk, D. L., Vetting, M. W., Ohlendorf, D. H. and Lipscomb, J. D. 2005. Roles of the equatorial tyrosyl iron ligand of protocatechuate 3,4-dioxygenase in catalysis. Biochemistry 44, 11024-11039.
  4. Vetting, M. W., D'argenio, D. A., Ornston, L. N. and Ohlendorf, D. H. 2000. Structure of acinetobacter strain adp1 protocatechuate 3,4-dioxygenase at 2.2 Å resolution: implications for the mechanism of an intradiol dioxygenase. Biochemistry 39, 7943-7955.
  5. Whitaker, J. R. 1995. Polyphenol oxidase, pp. 271-307. In: Wong, D. W. S. (ed), Food enzymes structure and mechanism. Chapman & Hall: New York, NY, USA.
  6. Lundblad, R. L. and Noyes, C. M. 1984a. Chemical reagents for protein modification. Vol I, pp. 1-166, CRC Press: Boca Raton, FL, USA.
  7. Lundblad, R. L. and Noyes, C. M. 1984b. Chemical reagents for protein modification. Vol II, pp. 1-169, CRC Press: Boca Raton, FL, USA.
  8. Mapson, L. W. and Tomalin, A. W. 1961. Preservation of peeled potato. Ⅲ. The inactivation of phenolase by heat. J. Sci. Food Agr. 12, 54-58.
  9. Orville, A. M., Lipscomb, J. D. and Ohlendorf, D. H. 1997a. Crystal structures of substrate and substrate analog complexes of protocatechuate 3,4-dioxygenase: endogenous Fe3+ ligand displacement in response to substrate binding. Biochemistry 36, 10052-10066.
  10. Martinez, M. V. and Whitaker, J. R. 1995. The biochemistry and control of enzymatic browning. Trends Food Sci. Technol. 6, 195-200.
  11. Montgomery, M. W. 1983. Cysteine as an inhibitor of browning in pear juice concentrate. J. Food Sci. 48, 951-952.
  12. Ohlendorf, D. H., Orville, A. M. and Lipscomb, J. D. 1994. Structure of protocatechuate 3,4-dioxygenase from Pseudomonas aeruginosa at 2.15 Å resolution. J. Mol. Biol. 244, 586-608.
  13. Orville, A. M., Elango, N. E., Lipscomb, J. D. and Ohlendorf, D. H. 1997b. Structures of competitive inhibitor complexes of protocatechuate 3,4-dioxygenase: multiple exogenous ligand binding orientations within the active site. Biochemistry 36, 10039-10051.
  14. Ponting, J. D., Jackson, R. and Watters, G. 1971. Refrigerated apple slices. Effects of pH, sulfites and calcium on texture. J. Food Sci. 36, 349-350.
  15. Price, N. C. and Stevens, L. 1998. Fundamentals of Enzymology. Oxford University Press: New York, NY, USA.
  16. Frazee, R. W., Orville, A. M., Dolbeare, K. B., Yu, H., Ohlendorf, D. H. and Lipscomb, J. D. 1998. The axial tyrosinate Fe3+ ligand in protocatechuate 3,4-dioxygenase influences substrate binding and product release: evidence for new reaction cycle intermediates. Biochemistry 37, 2131-2144.
  17. Friedman, M. 1996. Food browning and its prevention: an overview. J. Agric. Food Chem. 44, 631-653.
  18. Kelly, S. H. and Finkle, B. J. 1969. Action of a ring-cleaving oxygenase in preventing oxidase darkening of apple juice. J. Sci. Food Agr. 20, 629-632.
  19. Fujisawa, H., Hiromi, K., Uyeda, M., Okuno, S., Nozaki, M. and Hayaishi, O. 1972. Protocatechuate 3,4 dioxygenase III. An oxygenated form of the enzyme as reaction intermediate. J. Biol. Chem. 247, 4422-4428.
  20. Joslyn, M. A. and Ponting, J. D. 1951. Enzyme-catalyzed oxidative browning of fruit products. Adv. Food Res. 3, 1-44.
  21. Kahn, V. 1985. Effect of proteins, protein hydrolyzates and amino acids on o-dihydroxyphenolase activity of polyphenol oxidase of mushroom, avocado, and banana. J. Food Sci. 50, 111-115.
  22. Kurahashi, T., Oda, K., Sugimoto, M., Ogura, T. and Fujii, H. 2006. Trigonal-bipyramidal geometry induced by an external water ligand in a sterically hindered iron salen complex, related to the active site of protocatechuate 3,4- dioxygenase. Inorg. Chem. 45, 7709-7721.
  23. Lim, J. C., Gruschus, J. M., Kim, G., Berlett, B. S., Tjandra, N. and Levine, R. L. 2012. A low pKa cysteine at the active site of mouse methionine sulfoxide reductase A. J. Biol. Chem. 287, 25596-601.
  24. Lukes, B., O'brien, T. J. and Scanlan, R. A. 1980. Residual sulfur dioxide in finished malt: Colorimetric determination and relation to N-nitrosodimethylamine. Am. Soc. Brew. Chem. J. 38, 146-148.
  25. Bedrosian, K., Nelson, A. I. and Seinberg, M. P. 1959. Effect of borates and other inhibitors on enzymatic browning in apple tissues. Food Technol. 13, 722-726.
  26. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
  27. Cho, Y. K. and Cook, P. F. 1988. Inactivation of pyrophosphate- dependent phosphofructokinase from Propionibacterium freudenreichii by pyridoxal 5’-phosphate. J. Biol. Chem. 263, 5135-5140.
  28. Cleland, W. W. 1979. Statistical analysis of enzyme kinetic data. Meth. Enzymol. 63, 103-138.
  29. Dagleys, S. 1984. Microbial degradation of aromatic compounds. Devel. Ind. Microbiol. 25, 53-65.
  30. Davis, M. L., Wasinger, E. C., Westre, T. E., Zaleski, J. M., Orville, A. M., Lipscomb, J. D., Hedman, B., Hodgson, K. O. and Solomon, E. I. 1999. Spectroscopic investigation of reduced protocatechuate 3,4-dioxygenase: charge-induced alterations in the active site iron coordination environment. Inorg. Chem. 38, 3676-3683.
  31. Durham, D. R., Stirling, L. A., Ornston, L. N. and Perry, J. J. 1980. Intergeneric evolutionary homology revealed by the study of protocatechuate 3,4-dioxygenase from Azotobacter vinelandii. Biochemistry 19, 149-155.
  32. Elgren, T. E., Orville, A. M., Kelly, K. A., Lipscomb, J. D., Ohlendorf, D. H. and Que, L. Jr. 1997. Crystal structure and resonance raman studies of protocatechuate 3,4-dioxygenase complexed with 3,4-dihydroxyphenylacetate. Biochemistry 36, 11504-11513.
  33. Engel, P. C. 1996. Enzymology LabFax. pp. 175-190, Academic Press: San Diego, CA, USA.
  34. Ashie, I. N. A., Simpson, B. K. and Smith, J. P. 1996. Mechanisms for controlling enzymatic reactions in foods. Crit. Rev. Food Sci. Nutr. 36, 1-30.