DOI QR코드

DOI QR Code

Anti-cancer Properties and Relevant Mechanisms of Cordycepin, an Active Ingredient of the Insect Fungus Cordyceps spp.,

동충하초 유래 cordycepin의 항암 활성 기전 최근 연구 동향

Jeong, Jin-Woo;Choi, Yung Hyun
정진우;최영현

  • Received : 2015.05.08
  • Accepted : 2015.05.18
  • Published : 2015.05.30

Abstract

Cancers are the largest cause of mortality and morbidity all over the world. Cordycepin, an adenosine analog, is a major functional component of the Cordyceps species, which has been widely used in traditional Oriental medicine. Over the last decade, this compound has been reported to possess many pharmacological properties, such as an ability to enhance immune function, as well as anti-inflammatory, antioxidant and anti-cancer effects. Recently, numerous studies have reported interesting properties of cordycepin as a chemopreventive agent as well. There is an accumulating body of experimental evidences suggesting that cordycepin impedes cancer progression by promoting apoptosis, inducing cell cycle arrest, modulating intracellular signaling pathways, and inhibiting invasion and metastasis of cancer cells. In many cancer cell lines, cordycepin inhibits growth and cell cycle progression by inducing arrest of the G2/M phase, resulting from the inhibition of retinoblastoma protein phosphorylation and induction of cyclin-dependent kinase inhibitors. To induce apoptosis, cordycepin activates the extrinsic and intrinsic pathways, which promotes reactive oxygen species generation and the downstream activation of kinase cascades. Cordycepin also can activate alternative pathways to cell death such autophagy. In addition, cordycepin can inhibit the pro-metastatic processes of cancer cell detachment, migration, and invasion through a variety of mechanisms, including the nuclear factor-kappa B and activated protein-1 signaling pathways. In this review, we summarized the variety of action mechanisms by which cordycepin may mediate chemopreventive effects on cancer and discussed the potential of this natural product as a promising therapeutic inhibitor of cancer development.

Keywords

Apoptosis;cancer;cell cycle;cordycepin;metastasis

References

  1. Yoshikawa, N., Kunitomo, M., Kagota, S., Shinozuka, K. and Nakamura, K. 2009. Inhibitory effect of cordycepin on hematogenic metastasis of B16-F1 mouse melanoma cells accelerated by adenosine-5'-diphosphate. Anticancer Res. 29, 3857-3860.
  2. Zhang, H. S., Gavin, M., Dahiya, A., Postigo, A. A., Ma, D., Luo, R. X., Harbour, J. W. and Dean, D. C. 2000. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and RbhSWI/SNF. Cell 101, 79-89. https://doi.org/10.1016/S0092-8674(00)80625-X
  3. Zhu, J. L. and Liu, C. 1992. Modulating effects of extractum semen Persicae and cultivated Cordyceps hyphae on immuno-dysfunction of inpatients with posthepatitic cirrhosis. Chin. J. Integr. Med. 12, 207-210.
  4. Tunggal, J. A., Helfrich, I., Schmitz, A., Schwarz, H., Günzel, D., Fromm, M., Kemler, R., Krieg, T. and Niessen, C. M. 2005. E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J. 24, 1146-1156. https://doi.org/10.1038/sj.emboj.7600605
  5. Stetler-Stevenson, W. G. 1990. Type Ⅳ collagenases in tumor invasion and metastasis. Cancer Metastasis Rev. 9, 289-303. https://doi.org/10.1007/BF00049520
  6. Swift, J. G., Mukherjee, T. M. and Rowland, R. 1983. Intercellular junctions in hepatocellular carcinoma. J. Submicrosc. Cytol. 15, 799-810.
  7. Thomadaki, H., Tsiapalis, C. M. and Scorilas, A. 2005. Polyadenylate polymerase modulations in human epithelioid cervix and breast cancer cell lines, treated with etoposide or cordycepin, follow cell cycle rather than apoptosis induction. Biol. Chem. 386, 471-480.
  8. Van Itallie, C. M. and Anderson, J. M. 2004. The molecular physiology of tight junction pores. Physiology 19, 331-338. https://doi.org/10.1152/physiol.00027.2004
  9. Vermeulen, K., Van Bockstaele, D. R. and Berneman, Z. N. 2003. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36, 131-149. https://doi.org/10.1046/j.1365-2184.2003.00266.x
  10. Wang, B. J., Won, S. J., Yu, Z. R. and Su, C. L. 2005. Free radical scavenging and apoptotic effects of Cordyceps sinensis fractionated by supercritical carbon dioxide. Food Chem. Toxicol. 43, 543-552. https://doi.org/10.1016/j.fct.2004.12.008
  11. Wong, A. S. and Gumbiner, B. M. 2003. Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J. Cell Biol. 161, 1191-1203. https://doi.org/10.1083/jcb.200212033
  12. Wu, W. C., Hsiao, J. R., Lian, Y. Y., Lin, C. Y. and Huang, B. M. 2007. The apoptotic effect of cordycepin on human OEC-M1 oral cancer cell line. Cancer Chemother. Pharmacol. 60, 103-108. https://doi.org/10.1007/s00280-006-0354-y
  13. Salvesen, G. S. and Duckett, C. S. 2002. IAP proteins: blocking the road to death’s door. Nat. Rev. Mol. Cell Biol. 3, 401-410.
  14. Nakamura, K., Konoha, K., Yoshikawa, N., Yamaguchi, Y., Kagota, S., Shinozuka, K. and Kunitomo, M. 2005. Effect of cordycepin (3'-deoxyadenosine) on hematogenic lung metastatic model mice. In Vivo 19, 137-141.
  15. Noh, E. M., Youn, H. J., Jung, S. H., Han, J. H., Jeong, Y. J., Chung, E. Y., Jung, J. Y., Kim, B. S., Lee, S. H., Lee, Y. R. and Kim, J. S. 2010. Cordycepin inhibits TPA-induced matrix metalloproteinase-9 expression by suppressing the MAPK/AP-1 pathway in MCF-7 human breast cancer cells. Int. J. Mol. Med. 25, 255-260.
  16. Obeyesekere, M. N., Tucker, S. L. and Zimmerman, S. O. 1994. A model for regulation of the cell cycle incorporating cyclin A, cyclin B and their complexes. Cell Prolif. 27, 105-113. https://doi.org/10.1111/j.1365-2184.1994.tb01409.x
  17. Schneeberger, E. E. and Lynch, R. D. 2004. The tight junction: a multifunctional complex. Am. J. Physiol. Cell. Physiol. 286, C1213-C1228. https://doi.org/10.1152/ajpcell.00558.2003
  18. Schwartz, G. K. 2002. Cdk inhibitors: cell cycle arrest versus apoptosis. Cell Cycle 1, 122-123. https://doi.org/10.4161/cc.1.2.115
  19. Shi, P., Huang, Z., Tan, X. and Chen, G. 2008. Proteomic detection of changes in protein expression induced by cordycepin in human hepatocellular carcinoma BEL-7402 cells. Methods Find. Exp. Clin. Pharmacol. 30, 347-353. https://doi.org/10.1358/mf.2008.30.5.1186085
  20. Morgan, D. O. 1997. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261-291. https://doi.org/10.1146/annurev.cellbio.13.1.261
  21. Mullin, J. M. 1997. Potential interplay between luminal growth factors and increased tight junction permeability in epithelial carcinogenesis. J. Exp. Zool. 279, 484-489. https://doi.org/10.1002/(SICI)1097-010X(19971201)279:5<484::AID-JEZ11>3.0.CO;2-8
  22. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. and Wang, X. 1998. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-490. https://doi.org/10.1016/S0092-8674(00)81589-5
  23. Liao, H. F., Chen, Y. Y., Liu, J. J., Hsu, M. L., Shieh, H. J., Liao, H. J., Shieh, C. J., Shiao, M. S. and Chen, Y. J. 2003. Inhibitory effect of caffeic acid phenethyl ester on angiogenesis, tumor invasion and metastasis. J. Agric. Food Chem. 51, 7907-7912. https://doi.org/10.1021/jf034729d
  24. Liao, Y., Ling, J., Zhang, G., Liu, F., Tao, S., Han, Z., Chen, S., Chen, Z. and Le, H. 2015. Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in Leukemia cells. Cell Cycle 14, 761-771. https://doi.org/10.1080/15384101.2014.1000097
  25. Lui, J. C., Wong, J. W., Suen, Y. K., Kwok, T. T., Fung, K. P. and Kong, S. K. 2007. Cordycepin induced eryptosis in mouse erythrocytes through a Ca2+-dependent pathway without caspase-3 activation. Arch. Toxicol. 81, 859-8565. https://doi.org/10.1007/s00204-007-0214-5
  26. Magnaghi-Jaulin, L., Groisman, R., Naguibneva, I., Robin, P., Lorain, S., Le Villain, J. P., Troalen, F., Trouche, D. and Harel-Bellan, A. 1998. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391, 601-605. https://doi.org/10.1038/35410
  27. Masciullo, V., Khalili, K. and Giordano, A. 2000. The Rb family of cell cycle regulatory factors: clinical implications. Int. J. Oncol. 17, 897-902.
  28. Matsushime, H., Ewen, M. E., Strom, D. K., Kato, J. Y., Hanks, S. K., Roussel, M. F. and Sherr, C. J. 1992. Identification and properties of an atypical catalytic subunit (p34PSK-J3/Cdk4) for mammalian D type G1 cyclins. Cell 71, 323-334. https://doi.org/10.1016/0092-8674(92)90360-O
  29. Minshull, J., Golsteyn, R., Hill, C. S. and Hunt, T. 1990. The A- and B-type cyclin associated Cdc2 kinases in Xenopus turn on and off at different times in the cell cycle. EMBO J. 9, 2865-2875.
  30. Lee, S. Y., Debnath, T., Kim, S. K. and Lim, B. O. 2013. Anti-cancer effect and apoptosis induction of cordycepin through DR3 pathway in the human colonic cancer cell HT-29. Food Chem. Toxicol. 60, 439-447. https://doi.org/10.1016/j.fct.2013.07.068
  31. Lee, H. J., Burger, P., Vogel, M., Friese, K. and Brüning, A. 2012. The nucleoside antagonist cordycepin causes DNA double strand breaks in breast cancer cells. Invest. New Drugs 30, 1917-1925. https://doi.org/10.1007/s10637-012-9859-x
  32. Lee, S. J., Kim, S. K., Choi, W. S., Kim, W. J. and Moon, S. K. 2009. Cordycepin causes p21WAF1-mediated G2/M cell-cycle arrest by regulating c-Jun N-terminal kinase activation in human bladder cancer cells. Arch. Biochem. Biophys. 490, 103-106. https://doi.org/10.1016/j.abb.2009.09.001
  33. Lee, S. J., Moon, G. S., Jung, K. H., Kim, W. J. and Moon, S. K. 2010. c-Jun N-terminal kinase 1 is required for cordycepin-mediated induction of G2/M cell-cycle arrest via p21WAF1 expression in human colon cancer cells. Food Chem. Toxicol. 48, 277-283. https://doi.org/10.1016/j.fct.2009.09.042
  34. Lee, S. Y., Kim, G. T., Roh, S. H., Song, J. S., Kim, H. J., Hong, S. S., Kwon, S. W. and Park, J. H. 2009. Proteomic analysis of the anticancer effect of ginsenoside Rg3 in human colon cancer cell lines. Biosci. Biotechnol. Biochem. 73, 811-816. https://doi.org/10.1271/bbb.80637
  35. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S. and Wang, X. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489. https://doi.org/10.1016/S0092-8674(00)80434-1
  36. Liang, Y. L., Liu, Y., Yang, J. W. and Liu, C. X. 1997. Studies on pharmacological activities of cultivated Cordyceps sinensis. Phytotheraphy Res. 11, 237-241. https://doi.org/10.1002/(SICI)1099-1573(199705)11:3<237::AID-PTR49>3.0.CO;2-2
  37. Lee, E. J., Kim, W. J. and Moon, S. K. 2010. Cordycepin suppressesTNF-alpha-induced invasion, migration and matrix metalloproteinase-9 expression in human bladder cancer cells. Phytother. Res. 24, 1755-1761. https://doi.org/10.1002/ptr.3132
  38. Koff, A., Giordano, A., Desai, D., Yamashita, K., Harper, J. W., Elledge, S., Nishimoto, T., Morgan, D. O., Franza, B. R. and Roberts, J. M. 1992. Formation and activation of a cyclin E-Cdk2 complex during the G1 phase of the human cell cycle. Science 257, 1689-1694. https://doi.org/10.1126/science.1388288
  39. Lamszus, K., Kunkel, P. and Westphal, M. 2003. Invasion as limitation to antiangiogenic glioma therapy. Acta. Neurochir. Suppl. 88, 169-177.
  40. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G. and Earnshaw, W. C. 1994. Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346-347. https://doi.org/10.1038/371346a0
  41. Lee, H. H., Jeong, J. W., Lee, J. H., Kim, G. Y., Cheong, J., Jeong, Y. K., Yoo, Y. H. and Choi, Y. H. 2013. Cordycepin increases sensitivity of ep3B human hepatocellular carcinoma cells to TRAIL-mediated apoptosis by inactivating the JNK signaling pathway. Oncol. Rep. 30, 1257-1264. https://doi.org/10.3892/or.2013.2589
  42. Lee, H. H., Kim, S. O., Kim, G. Y., Moon, S. K., Kim, W. J., Jeong, Y. K., Yoo, Y. H. and Choi, Y. H. 2014. Involvement of autophagy in cordycepin-induced apoptosis in human prostate carcinoma LNCaP cells. Environ. Toxicol. Pharmacol. 38, 239-250. https://doi.org/10.1016/j.etap.2014.06.003
  43. Lee, H. H., Park, C., Jeong, J. W., Kim, M. J., Seo, M. J., Kang, B. W., Park, J. U., Kim, G. Y., Choi, B. T., Choi, Y. H. and Jeong, Y. K. 2013. Apoptosis induction of human prostate carcinoma cells by cordycepin through reactive oxygen speciesmediated mitochondrial death pathway. Int. J. Oncol. 42, 1036-1044. https://doi.org/10.3892/ijo.2013.1762
  44. Jeong, J. W., Jin, C. Y., Park, C., Han, M. H., Kim, G. Y., Moon, S. K., Kim, C. G., Jeong, Y. K., Kim, W. J., Lee, J. D. and Choi, Y. H. 2012. Inhibition of migration and invasion of LNCaP human prostate carcinoma cells by cordycepin through inactivation of Akt. Int. J. Oncol. 40, 1697-704.
  45. Jang, K. J., Kwon, G. S., Jeong, J. W., Kim, C. H., Yoon, H. M., Kim, G. Y., Shim, J. H., Moon, S. K., Kim, W. J. and Choi, Y. H. 2015. Cordyceptin induces apoptosis through repressing hTERT expression and inducing extranuclear export of hTERT. J. Biosci. Bioeng. 119, 351-357. https://doi.org/10.1016/j.jbiosc.2014.08.008
  46. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E. and Forman. D. 2011. Global cancer statistics. CAA Cancer J. Clin. 61, 69-90. https://doi.org/10.3322/caac.20107
  47. Jeong, J. W. and Choi, Y. H. 2014. Cordycepin inhibits migration and invasion of HCT116 human colorectal carcinoma cells by tightening of tight junctions and inhibition of matrix metalloproteinase activity. J. Kor. Soc. Food Sci. Nutr. 43, 86-92. https://doi.org/10.3746/jkfn.2014.43.1.086
  48. Jeong, J. W., Jin, C. Y., Park, C., Hong, S. H., Kim, G. Y., Jeong, Y. K., Lee, J. D., Yoo, Y. H. and Choi, Y. H. 2011. Induction of apoptosis by cordycepin via reactive oxygen species generation in human leukemia cells. Toxicol. In Vitro 25, 817-824. https://doi.org/10.1016/j.tiv.2011.02.001
  49. Jung, S. M., Park, S. S., Kim, W. J. and Moon, S. K. 2012. Ras/ERK1 pathway regulation of p27KIP1-mediated G1-phase cell-cycle arrest in cordycepin-induced inhibition of the proliferation of vascular smooth muscle cells. Eur. J. Pharmacol. 681, 15-22. https://doi.org/10.1016/j.ejphar.2012.02.003
  50. Kobayasi, Y. 1982. Keys to the taxa of the genera Cordyceps and Torrubiella. Trans. Mycol. Soc. Japan 23, 329-364.
  51. Koç, Y., Urbano, A. G., Sweeney, E. B. and McCaffrey, R. 1996. Induction of apoptosis by cordycepin in ADA-inhibited TdT-positive leukemia cells. Leukemia 10, 1019-1024.
  52. Cunningham, K. G., Manson, W., Spring, F. S. and Hutchinson, S. A. 1950. Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature 166, 949.
  53. Dulić, V., Lees, E. and Reed, S. I. 1992. Association of human cyclin E with a periodic G1-S phase protein kinase. Science 257, 1958-1961. https://doi.org/10.1126/science.1329201
  54. Elledge, S. J., Richman, R., Hall, F. L., Williams, R. T., Lodgson, N. and Harper, J. W. 1992. Cdk2 encodes a 33-kDa cyclin A-associated protein kinase and is expressed before Cdc2 in the cell cycle. Proc. Natl. Acad. Sci. USA 89, 2907-2911. https://doi.org/10.1073/pnas.89.7.2907
  55. Han, S. I., Kim, Y. S. and Kim, T. H. 2008. Role of apoptotic and necrotic cell death under physiologic conditions. BMB Rep. 41, 1-10. https://doi.org/10.5483/BMBRep.2008.41.1.001
  56. He, W., Zhang, M. F., Ye, J., Jiang, T. T., Fang, X. and Song, Y. 2010. Cordycepin induces apoptosis by enhancing JNK and p38 kinase activity and increasing the protein expression of Bcl-2 pro-apoptotic molecules. J. Zhejiang Univ. Sci. B 11, 654-660.
  57. Holcik, M., Gibson, H. and Korneluk, R. G. 2001. XIAP: apoptotic brake and promising therapeutic target. Apoptosis 6, 253-261. https://doi.org/10.1023/A:1011379307472
  58. Huerta, S., Goulet, E. J., Huerta-Yepez, S. and Livingston, E. H. 2007. Screening and detection of apoptosis. J. Surg. Res. 139, 143-156. https://doi.org/10.1016/j.jss.2006.07.034
  59. Imesch, P., Hornung, R., Fink, D. and Fedier, A. 2011. Cordycepin (3′-deoxyadenosine), an inhibitor of mRNA polyadenylation, suppresses proliferation and activates apoptosis in human epithelial endometriotic cells in vitro. Gynecol. Obstet. Invest. 72, 43-49. https://doi.org/10.1159/000322395
  60. Bosch, F. X., Ribes, J., Diaz, M. and Cleries, R. 2004. Primary liver cancer: worldwide incidence and trends. Gastroenterology 127, 5-16. https://doi.org/10.1016/S0016-5085(04)01170-9
  61. Choi, S., Lim, M. H., Kim, K. M., Jeon, B. H., Song, W. O. and Kim, T. W. 2011. Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor. Toxicol. Appl. Pharmacol. 257, 165-173. https://doi.org/10.1016/j.taap.2011.08.030
  62. Coqueret, O. 2003. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol. 13, 65-70. https://doi.org/10.1016/S0962-8924(02)00043-0

Cited by

  1. Process Optimization of Solid-phase Fermentation of <i>Cordyceps militaris</i> with Germinated Soybean Using <i>Lactobacillus plantarum</i> KCB001 vol.22, pp.3, 2018, https://doi.org/10.13050/foodengprog.2018.22.3.256