DOI QR코드

DOI QR Code

Electrohydrodynamic Continuous Jet Printing of Ni Ink for Crystalline Silicon Solar Cells

전기 수력학 인쇄공정을 이용한 실리콘 태양전지 전극용 Ni 잉크 제조 및 인쇄 공정 연구

  • Lee, Youngwoo (Division of Advanced Materials Engineering, Kongju National University) ;
  • Kim, Jihoon (Division of Advanced Materials Engineering, Kongju National University)
  • 이영우 (공주대학교 신소재공학부) ;
  • 김지훈 (공주대학교 신소재공학부)
  • Received : 2015.08.06
  • Accepted : 2015.08.12
  • Published : 2015.09.01

Abstract

Ni ink for electrohydrodynamic (EHD) continuous jet printing has been developed by using Ni nanoparticles mixed with conhesiveness provider. EHD continuous jet printing was used in order to realize $20{\mu}m$ pattern width. Ink stability was investigated by using Turbi-scan which monitors agglomeration and precipitation of nanoparticles in the ink for three days. The Turbi-scan results showed that the formulated Ni ink had been stable for 3 days without any indication of precipitation across the entire ink. Antireflection coating (ARC) layer in crystalline solar cell wafers was removed by laser ablation technique leading to the formation of 84 grooves where the Ni ink was printed by EHD continuous jet printing. The printability and microstructure of EHD-jet-printed Ni lines were investigated by using optical and electron microscopes. 84 Ni lines with the width less than $20{\mu}m$ were successfully printed by one-time printing without any misalignment and fill the laser-ablated ARC grooves.

Acknowledgement

Supported by : 공주대학교

References

  1. A. Jaworek, J. Mater. Sci., 42, 266 (2007). [DOI: http://dx.doi.org/10.1007/s10853-006-0842-9] https://doi.org/10.1007/s10853-006-0842-9
  2. P. R. Chiarot, P. Sullivan, and R. B. Mrad, J. Microelectromech. Syst., 20, 1241 (2011). [DOI: http://dx.doi.org/10.1109/JMEMS.2011.2168810] https://doi.org/10.1109/JMEMS.2011.2168810
  3. M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, Adv. Mater., 22, 673 (2010). [DOI: http://dx.doi.org/10.1002/adma.200901141] https://doi.org/10.1002/adma.200901141
  4. H. M. Haverinen, R. A. Myllyla, and G. E. Jabbour, Appl. Phys. Lett., 94, 073108 (2009). [DOI: http://dx.doi.org/10.1063/1.3085771] https://doi.org/10.1063/1.3085771
  5. H. M. Haverinen, R. A. Myllyla, and G. E. Jabbour, J. Disp. Technol., 6, 87 (2010). [DOI: http://dx.doi.org/10.1109/JDT.2009.2039019] https://doi.org/10.1109/JDT.2009.2039019
  6. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, Science, 290, 2123 (2000). [DOI: http://dx.doi.org/10.1126/science.290.5499.2123] https://doi.org/10.1126/science.290.5499.2123
  7. R. A. Stree, W. S. Wong, S. E. Ready, M. L. Chabinyc, A. C. Arias, S. Limb, A. Salleo, and R. Lujan, Mater. Today, 9, 32 (2006). [DOI: http://dx.doi.org/10.1016/S1369-7021(06)71445-6] https://doi.org/10.1016/S1369-7021(06)71445-6
  8. T. Kawase, H. Sirringhaus, R. H. Friend, and T. Shimoda, Adv. Mater., 13, 1601 (2001). [DOI: http://dx.doi.org/10.1002/1521-4095(200111)13:21<1601::AID-ADMA1601>3.0.CO;2-X] https://doi.org/10.1002/1521-4095(200111)13:21<1601::AID-ADMA1601>3.0.CO;2-X
  9. J. Bharathan and Y. Yang, Appl. Phys. Lett., 72, 2660 (1998). [DOI: http://dx.doi.org/10.1063/1.121090] https://doi.org/10.1063/1.121090
  10. T. R. Hebner, C. C. Marcy, D. Marcy, M. H. Lu, and J. C. Sturm, Appl. Phys. Lett., 72, 519 (1998). [DOI: http://dx.doi.org/10.1063/1.120807] https://doi.org/10.1063/1.120807
  11. Y. Jang, J. Kim, and D. Byun, J. Phys. D, 46, 155103 (2013). [DOI: http://dx.doi.org/10.1088/0022-3727/46/15/155103] https://doi.org/10.1088/0022-3727/46/15/155103