DOI QR코드

DOI QR Code

Taurine Regulates Mitochondrial Function During 7,12-Dimethyl Benz[a]anthracene Induced Experimental Mammary Carcinogenesis

  • Received : 2015.06.03
  • Accepted : 2015.07.29
  • Published : 2015.09.30

Abstract

Objectives: The present study was undertaken to determine the modulatory effect of taurine on the liver mitochondrial enzyme system with reference to mitochondrial lipid peroxidation (LPO), antioxidants, major tricarboxylic acid cycle enzymes, and electron transport chain enzymes during 7,12-dimethyl benz[a]anthracene (DMBA) induced breast cancer in Sprague-Dawley rats. Methods: Animals in which breast cancer had been induced by using DMBA (25 mg/kg body weight) showed an increase in mitochondrial LPO together with decreases in enzymic antioxidants (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST)), non-enzymic antioxidants (reduced glutathione (GSH), vitamin C, and vitamin E), in citric acid cycle enzymes (isocitrate dehydrogenase (ICDH), alpha ketoglutarate dehydrogenase (alpha KDH), succinate dehydrogenase (SDH) and malate dehydrogenase (MDH)), and in electron transport chain (ETC) complexes. Results: Taurine (100 mg/kg body weight) treatment decreased liver mitochondrial LPO and augmented the activities/levels of enzymic, and non-enzymic antioxidants, tricarboxylic acid cycle enzymes and ETC complexes. Conclusion: The results of our present study demonstrated the chemotherapeutic efficacy of taurine treatment for DMBA-induced breast carcinomas.

References

  1. Vanitha MK, Sakthisekaran D, Anandakumar P. Breast cancer: types, epidemiology & aeitiology, a review. Adv J Pharm Life Sci Res. 2014;2(4):29-38.
  2. Asokkumar S, Naveenkumar C, Raghunandhakumar S, Kamaraj S, Anandakumar P, Jagan S, et al. Antiproliferative and antioxidant potential of beta-ionine against benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Mol Cell Biochem. 2012;363(1-2):335-45. https://doi.org/10.1007/s11010-011-1186-6
  3. Periyasamy K, Baskaran K, Ilakkia A, Vanitha K, Selvaraj S, Sakthisekaran D. Antitumor efficacy of tangeretin by targeting the oxidative stress mediated on 7,12-dimethylbenz(a) anthracene-induced proliferative breast cancer in sprague-dawley rats. Cancer Chemother Pharmacol. 2015;75(2):263-72. https://doi.org/10.1007/s00280-014-2629-z
  4. Mir IA, Tiku AB. Chemopreventive and therapeutic potential of "naringenin," a flavanone present in citrus fruits. Nutr Cancer. 2015;67(1):27-42. https://doi.org/10.1080/01635581.2015.976320
  5. Wang Y, Mei X, Yuan J, Lu W, Li B, Xu D. Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats. Toxicol Appl Pharmacol. 2015;doi:10.1016/j.taap.2015.08.017. https://doi.org/10.1016/j.taap.2015.08.017
  6. Vanitha MK, Baskaran K, Periyasamy K, Saravanan D, Ilakkia A, Selvaraj S, et al. A review on the biomedical importance of taurine. Int J Pharm Res Health Sci. 2015;3(3):680-6.
  7. Sree SL, Sethupathy S. Evaluation of the efficacy of taurine as an antioxidant in the management of patients with chronic periodontitis. Dent Res J. 2014;11(2):228-33.
  8. Aly HA, Khafagy RM. Taurine reverses endosulfan-induced oxidative stress and apoptosis in adult rat testis. Food Chem Toxicol. 2014;64:1-9. https://doi.org/10.1016/j.fct.2013.11.007
  9. Ahmad MK, Mahmood R. Protective effect of taurine against potassium bromate-induced hemoglobin oxidation, oxidative stress, and impairment of antioxidant defense system in blood. Environ Toxicol. 2014;doi:10.1002/tox.22045. https://doi.org/10.1002/tox.22045
  10. Maia AR, Batista TM, Victorio JA, Clerici SP, Delbin MA, Carneiro EM, et al. Taurine supplementation reduces blood pressure and prevents endothelial dysfunction and oxidative stress in post-weaning protein-restricted rats. PLoS One. 2014;9(8): e105851. https://doi.org/10.1371/journal.pone.0105851
  11. Hansen SH, Andersen ML, Cornett C, Gradinaru R, Grunnet N. A role for taurine in mitochondrial function. J Biomed Sci. 2010;24:17(1):23-30.
  12. Zhang X, Tu S, Wang Y, Xu B, Wan F. Mechanism of taurine-induced apoptosis in human colon cancer cells. Acta Biochim Biophys Sin. 2014;46(4):261-72. https://doi.org/10.1093/abbs/gmu004
  13. Sathish S, Shanthi P, Sachdanandam P. Mitigation of DMBA-induced mammary carcinoma in experimental rats by antiangiogenic property of Kalpaamruthaa. J Diet Suppl. 2011;8(2):144-57. https://doi.org/10.3109/19390211.2011.561824
  14. Vanitha K, Dhanapal S, Aruldass I, Kuppusamy P, Kuppusamy B, Sundaramoorthy S. Effect of taurine on cytotoxic markers in 7, 12-dimethyl benz(A)anthracene induced mammary carcinoma in experimental female sprague-dawley rats. Am J Pharm Tech Res. 2014;4(2):494-502.
  15. Johnson D, Lardy H. Isolation of liver and kidney mitochondria. Methods Enzymol. 1967;10:94-6. https://doi.org/10.1016/0076-6879(67)10018-9
  16. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin's phenol reagent. J Biol Chem. 1951;193(1):265-75.
  17. Ohkawa H., Ohish N, Yagi K. Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351-8. https://doi.org/10.1016/0003-2697(79)90738-3
  18. Marklund S, Marklund G. Involvement of superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47(3):469-74. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  19. Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47(2):389-94. https://doi.org/10.1016/0003-2697(72)90132-7
  20. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hajeman DG, Hoekstra WG. Selenium-biochemical role as a component of glutathione purification and assay. Science. 1973;179(4073):588-90. https://doi.org/10.1126/science.179.4073.588
  21. Beutler E. Active transport of glutathione disulfide from erythrocytes. In: Larson A, Orrenius S, Holmgren A, Mannerwik B, editors. Functions of glutathione-biochemical. physiological. toxicological and clinical aspects. New York: Raven Press; 1968. p. 65.
  22. Habig WH, Pabst MJ, Jacob WB. Glutathione-S-transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130-9.
  23. Moron MS, Despierre JW, Minnervik B. Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979;582(1):67-78. https://doi.org/10.1016/0304-4165(79)90289-7
  24. Desai ID. Vitamin E analysis methods for animal tissues. Methods Enzymol. 1984;105:138-47. https://doi.org/10.1016/S0076-6879(84)05019-9
  25. Omaye AT, Turnbull JD, Sauberdich HE. Selected method for determination of ascorbic acid in animal cells, tissues, and fluids. Methods Enzymol. 1979;62:3-11. https://doi.org/10.1016/0076-6879(79)62181-X
  26. King J. Practical clinical enzymology. London: D Van Nostrand Company; 1965. p. 83-93.
  27. Reed LJ, Mukherjee BB. Alpha ketoglutarate dehydrogenase complex from Escherichia coli. Methods Enzymol. 1969;13:55-61. https://doi.org/10.1016/0076-6879(69)13016-5
  28. Slater EC, Bonner WD. Effect of fluoride on succinate oxidase system. Biochem J. 1952;52(2):185-96. https://doi.org/10.1042/bj0520185
  29. Mehler AH, Kornberg A, Grisolia S, Ochoa S. The enzymatic mechanisms of oxidation reduction between malate or isocitrate and pyruvate. J Biol Chem. 1948;174:961-77.
  30. Birch-Machin MA, Briggs HL, Saborido AA, Bindoff LA, Turnbull DM. An evaluation of the measurement of the activities of complexes I-IV in the respiratory chain of human skeletal muscle mitochondria. Biochem Med Metab Biol. 1994;51(1):35-42. https://doi.org/10.1006/bmmb.1994.1004
  31. Geren RI, Greenberg HM, Mcdonald M, Abbott BJ. Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemoth Rep. 1972;33(3):103.
  32. Ramakrishnan G, Raghavendran HR, Vinodhkumar R, Devaki T. Suppression of N-nitrosodiethyalamine induced hepatocarcinogenesis by silymarin in rats. Chem Biol Interact. 2006;161(2):104-14. https://doi.org/10.1016/j.cbi.2006.03.007
  33. Kamaraj S, Anandakumar P, Jagan S, Ramakrishnan G, Devaki T. Hesperidin attenuates mitochondrial dysfunction during benzo(a)pyrene-induced lung carcinogenesis in mice. Fundam Clin Pharmacol. 2011;25(1):91-8. https://doi.org/10.1111/j.1472-8206.2010.00812.x
  34. Anandakumar P, Jagan S, Kamaraj S, Ramakrishnan G, Titto AA, Devaki T. Beneficial influence of capsaicin on lipid peroxidation, membrane-bound enzymes and glycoprotein profile during experimental lung carcinogenesis. J Pharm Pharmacol. 2008;60(6):803-8. https://doi.org/10.1211/jpp.60.6.0017
  35. Sen CK. Oxygen toxicity and antioxidants state of the art. Indian J Physiol Pharmacol. 1995;39(3):177-96.
  36. Anandakumar P, Kamaraj S, Jagan S, Ramakrishnan G, Vinodhkumar R, Devaki T. Capsaicin modulates pulmonary antioxidant defense system during benzo(a) pyrene-induced lung cancer in Swiss albino mice. Phytother Res. 2008;22(4):529-33. https://doi.org/10.1002/ptr.2393
  37. Vijayalakshmi T, Muthulakshmi V, Sachnanandam P. Salubrious effect of semecarpus anacardium against lipid peroxidative changes in adjuvant arthritis-studied in rats. Mol Cell Biochem. 1997;175(1-2):65-9. https://doi.org/10.1023/A:1006837312145
  38. Sener S, Braun JP, Rico AG, Benard P, Burgat Sacaze V. Urine gamma glutamyl transpeptidase in rat kidney toxicology: nephropathy by repeated injection of mercuric chloride, effects of sodium selenite. Toxicology. 1979;12(3):299-305. https://doi.org/10.1016/0300-483X(79)90076-3
  39. Buzby GP, Mullen JL, Stein TP, Miller EE, Hobbs CL, Rosato EF. Host-tumor interactions and nutrient supply. Cancer. 1980;45(12):2940-8. https://doi.org/10.1002/1097-0142(19800615)45:12<2940::AID-CNCR2820451208>3.0.CO;2-P
  40. Kosower NS, Kosower EM. The glutathione-glutathione disulphide system. In: Pryor WA, editor. Free radicals in biology. NewYork: Academic Press; 1976. p. 57-84.
  41. Anandakumar P, Kamaraj S, Jagan S, Ramakrishnan G, Vinodhkumar R, Devaki T. Stabilization of pulmonary mitochondrial enzyme system by capsaicin during benzo(a)pyrene induced experimental lung cancer. Biomed Pharmacother. 2008;62(6):390-4. https://doi.org/10.1016/j.biopha.2007.09.005
  42. Frie B, England L, Ames BN. Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci USA. 1981;86(16):6377-81.
  43. Komburst DJ, Mavis RD. Relative susceptibility of microsomes from lung, heart, liver, kidney, brain and testes to lipid peroxidation. correlation with vitamin E contents. Lipids. 1980;15(5):315-22. https://doi.org/10.1007/BF02533546
  44. Anandakumar P, Kamaraj S, Jagan S, Ramakrishnan G, Devaki T. Effect of capsaicin on glucose metabolism studied in experimental lung carcinogenesis. Nat Prod Res. 2009;23(8):763-64. https://doi.org/10.1080/14786410802604571
  45. Senthilnathan P, Padmavathi R, Magesh V, Sakthisekaran D. Modulation of TCA cycle enzymes and electron transport chain systems in experimental lung cancer. Life Sci. 2006;78(9):1010-4. https://doi.org/10.1016/j.lfs.2005.06.005

Cited by

  1. Modulatory Effect of Taurine on 7,12-Dimethylbenz(a)Anthracene-Induced Alterations in Detoxification Enzyme System, Membrane Bound Enzymes, Glycoprotein Profile and Proliferative Cell Nuclear Antigen in Rat Breast Tissue vol.30, pp.8, 2016, https://doi.org/10.1002/jbt.21805
  2. Experimental mammary carcinogenesis - Rat models vol.173, 2017, https://doi.org/10.1016/j.lfs.2017.02.004
  3. Taurine abrogates mammary carcinogenesis through induction of apoptosis in Sprague-Dawley rats vol.32, pp.10, 2018, https://doi.org/10.1002/jbt.22204
  4. Roles of the MST1-JNK signaling pathway in apoptosis of colorectal cancer cells induced by Taurine vol.13, pp.1, 2018, https://doi.org/10.1080/19932820.2018.1500346
  5. Taurine Intakes Increase Superoxide Dismutase Activity in Knee Osteoarthritis vol.217, pp.1755-1315, 2019, https://doi.org/10.1088/1755-1315/217/1/012054