DOI QR코드

DOI QR Code

EVOLUTIONARY STATUS AND INTERNAL STRUCTURE OF μ CASSIOPEIAE

BACH, KIEHUNN

  • Received : 2015.02.11
  • Accepted : 2015.03.20
  • Published : 2015.06.30

Abstract

We investigate physical properties of the nearby (∼ 7.5 pc) astrometric binary μ Cas in the context of standard evolutionary theory. Based on the spectroscopically determined relative abundances ([α/Fe] ≳ +0.4 dex, [Fe/H] ∼ −0.7 dex), all physical inputs such as opacities and equation of state are consistently generated. By combining recent spectroscopic analyses with the astrometric observations from the HIPPARCOS parallaxes and the CHARA array, the evolutionary model grids have been constructed. Through the statistical evaluation of the χ2-minimization among alternative models, we find a reliable evolutionary solution (MA, MB, tage) = (0.74 M, 0.19 M, 11 Gyr) which excellently satisfies observational constraints. In particular, we find that the helium abundance of μ Cas is comparable with the primordial helium contents (Yp ∼ 0.245). On the basis of the well-defined stellar parameters of the primary star, the internal structure and the p-mode frequencies have been estimated. From our seismic computation, μ Cas is expected to have a first order spacing ∆ν ∼ 169 μHz. The ultimate goal of this study is to describe physical processes inside a low-mass star through a complete modelling from the spectroscopic observation to the evolutionary computation.

Keywords

stars: individual: μCas;fundamental parameters;evolution;interiors;atmospheres;asteroseismology

References

  1. Wagman, N. E., Daniel, Z., & Crissman, B. G. 1963, Photographic Determinations of the Parallaxes of 60 stars with the Thaw Refractor, AJ, 68, 352 https://doi.org/10.1086/108983
  2. Weinberg, S. 2008, Cosmology (Oxford: Oxford University Press)
  3. Wickes, W. C., & Dicke, R. H. 1974, Achromatic Double-star interferometry, AJ, 79, 1433 https://doi.org/10.1086/111697
  4. Wickes, W. C. 1975, Interferometric Measurements of Binary Stars, AJ, 80, 655 https://doi.org/10.1086/111790
  5. Worek, T. F., & Beardsley, W. R. 1977, A Spectroscopic Orbit for the Subdwarf Binary µ Cassiopeiae, ApJ, 217, 134 https://doi.org/10.1086/155562
  6. Yildiz, M. 2007, Models of α Centauri A and B With and Without Seismic Constraints: Time Dependence of the Mixing-Length Parameter, MNRAS, 374, 1264 https://doi.org/10.1111/j.1365-2966.2006.11218.x
  7. Zhao, G., & Gehren, T. 2000, Non-LTE Analysis of Neutral Magnesium in Cool Stars, A&A, 362, 1077
  8. Trampedach, R., Stein, R. F., Christensen-Dalsgaard, J., Nordlund, Å, & Asplund, M. 2014, Improvements to stellar structure models, based on a grid of 3D convection simulations - I. T(tau) relations, MNRAS, 442, 805 https://doi.org/10.1093/mnras/stu889
  9. Tanner, J. D., Basu, S., & Demarque, P. 2014, The Effect of Metallicity-dependent T-tau Relations on Calibrated Stellar Models, ApJ, 785, 13 https://doi.org/10.1088/0004-637X/785/1/13
  10. Thévenin, F., & Idiart, T. P. 1999, Stellar Iron Abundances: Non-LTE Effects, ApJ, 521, 753 https://doi.org/10.1086/307578
  11. Thoul, A. A., Bahcall, J. N., & Loeb, A,. 1994 Element Diffusion in the Solar Interior, ApJ, 421, 828 https://doi.org/10.1086/173695
  12. Trampedach, R., Stein, R. F., Christensen-Dalsgaard, J., Nordlund, Å, & Asplund, M. 2014, Improvements to stellar structure models, based on a grid of 3D convection simulations - II. Calibrating the mixing-length formulation, MNRAS, 445, 4366 https://doi.org/10.1093/mnras/stu2084
  13. Vandenberg, D. A., & Bridges, T. J. 1984, Theoretical Zero-age Main Sequences Applied to the Pleiades, Praesepe, and Hyades Star Clusters, ApJ, 278, 679 https://doi.org/10.1086/161836
  14. Vandenberg, D. A., & Hrivnak, B. J. 1985, The Age and Helium Content of the Eclipsing Binary AI Phoenicis, ApJ, 291, 270 https://doi.org/10.1086/163065
  15. Takeda, Y. 2007, Fundamental Parameters and Elemental Abundances of 160 F-G-K Stars Based on OAO Spectrum Database, PASJ, 59, 335 https://doi.org/10.1093/pasj/59.2.335
  16. Takeda, Y., & Takada-Hidai, M. 2011, Exploring the [S/Fe] Behavior of Metal-Poor Stars with the Si 1.046 µm Lines, PASJ, 63S, 537
  17. Villanova, S., Piotto, G., & Gratton, R. G. 2009, The Helium Content of Globular Clusters: Light Element Abundance Correlations and HB Morphology. I. NGC 6752, A&A, 499, 755
  18. Wagman, N. E. 1961, Reports of Observatories, AJ, 66, 433 https://doi.org/10.1086/108450
  19. Peimbert, M., & Torres-Peimbert, S. 1999, Peebles’s Analysis of the Primordial Fireball, ApJ Centennial Issue, 525, 1143
  20. Nissen, P. E., Hoeg, E., & Schuster, W. J. 1997, Surface Gravities of Metal-Poor Stars Derived from HIPPARCOS Parallaxes, in Proc. of the ESA Symp., HIPPARCOS Venice 97, ed. B. Battrick (ESA SP-402; Noordwijk: ESA), 225
  21. Pagel, B. E. J. 2009, Nucleosynthesis and Chemical Evolution of Galaxies (Cambridge: Cambridge University Press)
  22. Peebles, P. J. E. 1966 Primordial Helium Abundance and the Primordial Fireball. II, ApJ, 146, 542 https://doi.org/10.1086/148918
  23. Peimbert, M., Luridiana, V., & Peimbert, A. 2007, Revised Primordial Helium Abundance Based on New Atomic Data, ApJ, 666, 636 https://doi.org/10.1086/520571
  24. Reddy, B. E., Lambert, D. L., & Allende Prieto, C. 2006, Elemental Abundance Survey of the Galactic Thick Disc, MNRAS, 367, 1329 https://doi.org/10.1111/j.1365-2966.2006.10148.x
  25. Ribas, I., Jordi, C., Torra, J., & Giménez, Á. 2000, Chemical Composition of Eclipsing Binaries: A New Approach to the Helium-to-Metal Enrichment Ratio, MNRAS, 313, 99 https://doi.org/10.1046/j.1365-8711.2000.03195.x
  26. Russell, J. L., & Gatewood, G. D. 1984, The Parallax and Astrometric Orbit of µ Cassiopeiae, PASP, 96, 429 https://doi.org/10.1086/131358
  27. Ségransan, D., Kervella, P., Forveille, T., & Queloz, D. 2003, First Radius Measurements of Very Low Mass Stars with the VLTI, A&A, 397L, 5S
  28. Steigman, G. 2007, Primordial Nucleosynthesis in the Precision Cosmology Era, ARNPS, 57, 463
  29. Stein, R. F., & Nordlund, Å. 1989, Topology of Convection Beneath the Solar Surface, ApJ, 342, 95 https://doi.org/10.1086/185493
  30. Takeda, Y., & Honda, S. 2005, Photospheric CNO Abundances of Solar-Type Stars, PASJ, 57, 65 https://doi.org/10.1093/pasj/57.1.65
  31. McCarthy, D. W. Jr., Hancock, T., Freeman, J., et al. 1993, Infrared imaging of µ CAS B using rapid image motion compensation, AJ, 105, 652 https://doi.org/10.1086/116463
  32. Lebreton, Y., Perrin, M.-N., Cayrel, R., Baglin, A., & Fernandes, J. 1999, The HIPPARCOS HR Diagram of Nearby Stars in the Metallicity Range: −1.0 < [Fe/H] < 0.3. A New Constraint on the Theory of Stellar Interiors and Model Atmospheres, A&A, 350, 587
  33. Lippincott, S. L., & Wyckoff, S. 1964, Parallax and Orbital Motion of the Astrometric Binary µ Cassiopeiae from Photographs Taken with the 24-inch Sproul Refractor, AJ, 69, 471 https://doi.org/10.1086/109301
  34. Lippincott, S. L. 1981, Astrometric Analysis of the Unresolved Binary µ Cassiopeiae from Photographs Taken with the Sproul 61 Centimeter Refractor, ApJ, 248, 1053 https://doi.org/10.1086/159234
  35. Meléndez, J. and Barbuy, B., & Spite, F. 2001, Oxygen Abundances in Metal-poor Stars(−2.2 < [Fe/H] < −1.2) from Infrared OH Lines, ApJ, 556, 858 https://doi.org/10.1086/321624
  36. Mihalas, D. 1978, Stellar Atmospheres 2nd edn. (San Francisco: Freeman and Co.)
  37. Mishenina, T. V., Kovtyukh, V. V., Soubiran, C., Travaglio, C., & Busso, M. 2002, Abundances of Cu and Zn in Metal-Poor Stars: Clues for Galaxy Evolution, A&A, 396, 189
  38. Mishenina, T. V., Soubiran, C., Kovtyukh, V. V., & Korotin, S. A. 2004, On the Correlation of Elemental Abundances with Kinematics among Galactic Disk Stars, A&A, 418, 551
  39. Mishenina, T. V., Pignatari, M., Korotin, S. A., et al. 2013, Abundances of Neutron-Capture Elements in Stars of the Galactic Disk Substructures, A&A, 552A, 128
  40. Morel, P., Provost, J., Lebreton, Y., Thévenin, F., & Berthomieu, G. 2000, Calibrations of α Centauri A & B, A&A, 363, 675
  41. Ibukiyama, A., & Arimoto, N. 2002, HIPPARCOS Age-Metallicity Relation of the Solar Neighbourhood Disc Stars, A&A, 394, 927
  42. Haywood, J. W., Hegyi, D. J., & Gudehus, D. H., 1992, A Measurement of the Primordial Helium Abundance Using µ Cassiopeiae, ApJ, 392, 172 https://doi.org/10.1086/171415
  43. Hearnshaw, J. B. 1974, Carbon and Iron Abundances for Thirty F and G Type Stars, A&A, 34, 263
  44. Hopf, E. 1930, Remarks on the Schwarzschild-Milne Model of the Outer Layers of a Star, MNRAS, 90, 287 https://doi.org/10.1093/mnras/90.3.287
  45. Iglesias, C. A., & Rogers, F. J. 1996, Updated Opal Opacities, ApJ, 464, 943 https://doi.org/10.1086/177381
  46. Israelian, G., García López, R. J., & Rebolo, R. 1998, Oxygen Abundances in Unevolved Metal-poor Stars from Near-Ultraviolet OH Lines, ApJ, 507, 805 https://doi.org/10.1086/306351
  47. Izotov, Y. I., & Thuan, T. X. 2010 The Primordial Abundance of 4He: Evidence for Non-Standard Big Bang Nucleosynthesis, ApJ, 710, 67 https://doi.org/10.1088/2041-8205/710/1/L67
  48. Kim, K.-M., Jang, B.-H., Han, I., Jang, J. G., et al. 2002, Design and Manufacturing of the Cassegrain Interface Module of the BOAO Echelle Spectrograph, JKAS, 35, 221
  49. Kim, Y.-C. 1999, Standard Stellar Models; α Cen A and B, JKAS, 32, 119
  50. Lane, B. F., Boden, A. F., & Kulkarni, S. R. 2001, Interferometric Measurement of the Angular Sizes of Dwarf Stars in the Spectral Range K3-M4, ApJ, 551, 81 https://doi.org/10.1086/319849
  51. Lastennet, E., Valls-Gabaud, D., Lejeune, Th., & Oblak, E. 1999, Consequences of HIPPARCOS Parallaxes for Stellar Evolutionary Models. Three Hyades binaries: V 818 Tauri, 51 Tauri, and θ(2)Tauri, A&A, 349, 485
  52. Ferguson, J. W., Alexander, D. R., Allard, F., et al. 2005, Low-Temperature Opacities, ApJ, 623, 585 https://doi.org/10.1086/428642
  53. Fuhrmann, K. 1998, Nearby Stars of the Galactic Disk and Halo, A&A, 338, 161
  54. Fernandes, J., Lebreton, Y., Baglin, A., & Morel, P. 1998, Fundamental Stellar Parameters for Nearby Visual Binary Stars : η Cas, XI Boo, 70 OPH and 85 Peg. Helium Abundance, Age and Mixing Length Parameter for Low Mass Stars, A&A, 338, 455
  55. Fernandes, J., Morel, P., & Lebreton, Y. 2002, A Calibration of the 85 Peg Binary System, A&A, 392, 529
  56. Fuhrmann, K. 1998, Surface Gravities of Very Metal-Poor Stars from HIPPARCOS Parallaxes, A&A, 330, 626
  57. Fulbright, J. P. 2000, Abundances and Kinematics of Field Halo and Disk Stars. I. Observational Data and Abundance Analysis, AJ, 120, 1841 https://doi.org/10.1086/301548
  58. Freytag, B., Ludwig, H.-G., & Steffen, M. 1996 Hydrodynamical Models of Stellar Convection. The Role of Overshoot in DA White Dwarfs, A-Type Stars, and the Sun, A&A, 313, 497
  59. Gamow, G. 1948, The Origin of Elements and the Separation of Galaxies, Phys. Rev., 74, 505
  60. Gough, D. O., 1986, Asymptotic Sound-Speed Inversions, ASIC, 169, 125
  61. Grevesse, N., & Sauval, A. J. 1998, Standard Solar Composition, SSRv, 85, 161
  62. Guenther, D. B., Demarque, P., Kim, Y.-C., & Pinsonneault, M. H. 1992, Standard Solar Model, ApJ, 387, 372 https://doi.org/10.1086/171090
  63. Guenther, D. B. 1994, Nonadiabatic Nonradial p-mode Frequencies of the Standard Solar Model, with and without Helium Diffusion, ApJ, 422, 400 https://doi.org/10.1086/173735
  64. Chen, Y., Girardi, L., Bressan, A., Marigo, P., Barbieri, M., & Kong, X./ 2014, Improving PARSEC Models for Very Low Mass Stars, MNRAS, 444, 2525 https://doi.org/10.1093/mnras/stu1605
  65. Demarque, P., Guenther, D. B., & van Altena, W. F. 1986, The Case of Alpha Centauri - Mass, Age and P-Mode Oscillation Spectrum, ApJ, 300, 773 https://doi.org/10.1086/163853
  66. Chieffi, A., Straniero, O., & Salaris, M. 1995, Calibration of Stellar Models, ApJ, 445, 39 https://doi.org/10.1086/187884
  67. Cohen, J. G. 1968, Analysis of F and G Subdwarfs. III. an Abundance Analysis of the Subdwarf µ Cassiopeia, ApJ, 154, 179 https://doi.org/10.1086/149748
  68. Cox, J. P., & Giuli, R. T. 1968, Principles of Stellar Structure (NewYork: Gordon & Breach)
  69. Dennis, T. R. 1965, On the Possibility of Determining the Helium Content of the Subdwarf µ Cassiopeiae, PASP, 77, 283 https://doi.org/10.1086/128216
  70. Drummond, J. D., Christou, J. C., & Fugate, R. Q. 1995, Full Adaptive Optics Images of ADS 9731 and µ Cassiopeiae: Orbits and Masses, ApJ, 450, 380 https://doi.org/10.1086/176148
  71. Eggen, O. J., Lynden-Bell, D., & Sandage, A. R. 1962, Evidence from the motions of old stars that the Galaxy collapsed, ApJ, 136, 748 https://doi.org/10.1086/147433
  72. Catchpole, R. M., Pagel, B. E. J., & Powell, A. L. T. 1967, Chemical Composition of the Mild Subdwarf µ Cassiopeiae, MNRAS, 136, 403 https://doi.org/10.1093/mnras/136.4.403
  73. Chan, K. L., & Sofia, S. 1987, Validity Tests of the Mixing-Length Theory of Deep Convection, Sci., 235, 465 https://doi.org/10.1126/science.235.4787.465
  74. Feibelman, W. A. 1976, The Astrometric Binary MU Cassiopeiae - Photographically Almost Resolved, ApJ, 209, 497 https://doi.org/10.1086/154743
  75. Feltzing, S., & Gustafsson, B. 1998, Abundances in Metal-Rich Stars. Detailed Abundance Analysis of 47 G and K Dwarf Stars with [Me/H] > 0.10 dex, A&AS, 129, 237
  76. Bach, K., & Kang, W. 2015, Determination of Physical Dimensions of µ Cas, ASPC, in press
  77. Berger, D. H., Gies, D. R., McAlister, H. A., et al. 2006, First Results from the CHARA Array. IV. The Interferometric Radii of Low-Mass Stars, ApJ, 644, 475 https://doi.org/10.1086/503318
  78. Bahcall, J. N., & Loeb, A. 1990, Element Diffusion in Stellar Interiors, ApJ, 360, 267 https://doi.org/10.1086/169116
  79. Basu, S., & Antia, H. M. 2008, Helioseismology and Solar Abundances, PhR, 457, 217
  80. Bensby, T., & Feltzing, S. 2006, The Origin and Chemical Evolution of Carbon in the Galactic Thin and Thick Discs, MNRAS, 367, 1181 https://doi.org/10.1111/j.1365-2966.2006.10037.x
  81. Böhm-Vitense, E. 1958, Über die Wasserstoffkonvektionszone in Sternen Verschiedener Effektivtemperaturen und Leuchtkräfte. Mit 5 Textabbildungen, Z. Astrophys., 46, 108
  82. Boyajian, T. S., McAlister, H. A., Baines, E. K., et al. 2008, Angular Diameters of the G Subdwarf µ Cassiopeiae A and the K Dwarfs σ Draconis and HR 511 from Interferometric Measurements with the CHARA Array, ApJ, 683, 424 https://doi.org/10.1086/589554
  83. Caloi, V., Cardini, D., D’Antona, F., Badiali, M., Emanuele, A., & Mazzitelli, I. 1999, Kinematics and Age of Stellar Populations in the Solar Neighbourhood from Hipparcos Data, A&A, 351, 925
  84. Bach, K., Lee, J., Demarque, P., & Kim, Y.-C. 2009, Evolutionary Status of 85 Pegasi, ApJ, 703, 362 https://doi.org/10.1088/0004-637X/703/1/362
  85. Bach, K., & Kim, Y.-C. 2012, Hydrodynamical Comparison Test of Solar Models, Astron. Nachr., 333, 934 https://doi.org/10.1002/asna.201211816
  86. Cassisi, S., Salaris, M., & Irwin, A. W. 2003, The Initial Helium Content of Galactic Globular Cluster Stars from the R-Parameter: Comparison with the Cosmic Microwave Background Constraint, ApJ, 588, 862 https://doi.org/10.1086/374218
  87. Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, The Chemical Composition of the Sun, ARA&A, 47, 481
  88. Aerts, C., Christensen-Dalsgaard, J., & Kurtz, D. W. 2010, Asteroseismology, Astronomy and Astrophysics Library (Berlin: Springer)
  89. Alonso, A., Arribas, S., & Martínez-Roger, C. 1999, The Effective Temperature Scale of Giant Stars (F0-K5). II. Empirical Calibration of Teff versus Colours and [Fe/H], A&AS, 140, 261
  90. Asplund, M., Grevesse, N., & Sauval, A. J. 2005, The Solar Chemical Composition, ASPC, 336, 25

Acknowledgement

Grant : 3차원 유체 모델에서의 복사 전달 방법 연구