DOI QR코드

DOI QR Code

MILGROM’S LAW AND Λ’S SHADOW: HOW MASSIVE GRAVITY CONNECTS GALACTIC AND COSMIC DYNAMICS

  • Trippe, Sascha
  • Received : 2015.03.11
  • Published : 2015.06.30

Abstract

Massive gravity provides a natural solution for the dark energy problem of cosmology and is also a candidate for resolving the dark matter problem. I demonstrate that, assuming reasonable scaling relations, massive gravity can provide for Milgrom’s law of gravity (or “modified Newtonian dynamics”) which is known to remove the need for particle dark matter from galactic dynamics. Milgrom’s law comes with a characteristic acceleration, Milgrom’s constant, which is observationally constrained to a0 ≈ 1.1 × 10−10 ms−2 . In the derivation presented here, this constant arises naturally from the cosmologically required mass of gravitons like , with Λ, H0, and ΩΛ being the cosmological constant, the Hubble constant, and the third cosmological parameter, respectively. My derivation suggests that massive gravity could be the mechanism behind both, dark matter and dark energy.

Keywords

gravitation;cosmology;dark matter;dark energy

References

  1. Trippe, S. 2013, Can Massive Gravity Explain the Mass Discrepancy–Acceleration Relation of Disk Galaxies?, JKAS, 46, 133
  2. Tasinato, G., Koyama, K., & Niz, G. 2013, Exact Solutions in Massive Gravity, Class. Quantum Grav., 30, 184002 https://doi.org/10.1088/0264-9381/30/18/184002
  3. Trippe, S. 2013, A Simplified Treatment of Gravitational Interaction on Galactic Scales, JKAS, 46, 41
  4. Trippe, S. 2013, A Derivation of Modified Newtonian Dynamics, JKAS, 46, 93
  5. Trippe, S. 2014, The ‘Missing Mass Problem’ in Astronomy and the Need for a Modified Law of Gravity, Z. Naturforsch. A, 69, 173
  6. Trippe, S. 2015, The “Graviton Picture”: a Bohr Model for Gravitation on Galactic Scales?, Can. J. Phys., 93, 213 https://doi.org/10.1139/cjp-2014-0158
  7. Vainshtein, A. I. 1972, To the Problem of Non-Vanishing Gravitation Mass, Phys. Lett. B, 39, 393
  8. van Putten, M. H. P. M. 2014, Galaxy Rotation Curves in de Sitter Space, arXiv:1411.2665
  9. van Putten, M. H. P. M. 2015, Accelerated Expansion from Cosmological Holography, MNRAS, 450, L48 https://doi.org/10.1093/mnrasl/slv038
  10. Volkov, M. S. 2012, Cosmological Solutions with Massive Gravitons in the Bigravity Theory, J. High Energy Phys., 2012, 35
  11. Walker, M. G., & Loeb, A. 2014, Is the Universe Simpler than ΛCDM?, Contemp. Phys., 55, 198 https://doi.org/10.1080/00107514.2014.919741
  12. Wu, X., & Kroupa, P. 2015, Galactic Rotation Curves, the Baryon-to-Dark-Halo-Mass Relation and Space-Time Scale Invariance, MNRAS, 446, 330 https://doi.org/10.1093/mnras/stu2099
  13. Xu, D., Sluse, D., Gao, L., et al. 2015, How Well Can Dark-Matter Substructures Account for the Observed Radio Flux-Ratio Anomalies?, MNRAS, 447, 3189 https://doi.org/10.1093/mnras/stu2673
  14. Milgrom, M. 1983, A Modification of the Newtonian Dynamics: Implications for Galaxies, ApJ, 270, 371 https://doi.org/10.1086/161131
  15. McGaugh, S. S. 2005, Balance of Dark and Luminous Mass in Rotating Galaxies, Phys. Rev. Lett., 95, 171302 https://doi.org/10.1103/PhysRevLett.95.171302
  16. McGaugh, S. S. 2011, Novel Test of Modified Newtonian Dynamics with Gas Rich Galaxies, Phys. Rev. Lett., 106, 121303 https://doi.org/10.1103/PhysRevLett.106.121303
  17. Milgrom, M. 1983, A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis, ApJ, 270, 365 https://doi.org/10.1086/161130
  18. Milgrom, M. 1983, A Modification of the Newtonian Dynamics: Implications for Galaxy Systems, ApJ, 270, 384 https://doi.org/10.1086/161132
  19. Milgrom, M. 1984, Isothermal Spheres in the Modified Dynamics, ApJ, 287, 571 https://doi.org/10.1086/162716
  20. Milgrom, M. 1994, Modified Dynamics Predictions Agree with Observations of the HI Kinematics in Faint Dwarf Galaxies Contrary to the Conclusions of Lo, Sargent, and Young, ApJ, 429, 540 https://doi.org/10.1086/174341
  21. Milgrom, M. 2015, MOND Theory, Can. J. Phys. 93, 107 https://doi.org/10.1139/cjp-2014-0211
  22. Milgrom, M., & Sanders, R. H. 2008, Rings and Shells of “Dark Matter” as MOND Artifacts, ApJ, 678, 131 https://doi.org/10.1086/529119
  23. Rhee, M.-H. 2004, On the Physical Basis of the Tully-Fisher Relation, JKAS, 37, 15
  24. Rhee, M.-H. 2004, Mass-to-Light Ratio and the Tully- Fisher Relation, JKAS, 37, 91
  25. Sanders, R. H. 1994, A Faber–Jackson Relation for Clusters of Galaxies: Implications for Modified Dynamics, A&A, 284, L31
  26. Sanders, R. H. 2010, The Universal Faber–Jackson Relation, MNRAS, 407, 1128 https://doi.org/10.1111/j.1365-2966.2010.16957.x
  27. Fierz, M., & Pauli, W. 1939, On Relativistic Wave Equations for Arbitrary Spin in an Electromagnetic Field, Proc. R. Soc. London A, 173, 211 https://doi.org/10.1098/rspa.1939.0140
  28. De Felice, A., G¨umr¨ukc¨uoglu, A. E., Lin, C., & Mukohyama, S. 2013, On the Cosmology of Massive Gravity, Class. Quantum Grav., 30, 184004 https://doi.org/10.1088/0264-9381/30/18/184004
  29. de Rham, C. 2014, Massive Gravity, Living Rev. Relativ., 17, 7 https://doi.org/10.12942/lrr-2014-7
  30. Famaey, B., & McGaugh, S. S. 2012, Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions, Living Rev. Relativ., 15, 10 https://doi.org/10.12942/lrr-2012-10
  31. Gentile, G., Famaey, B., & de Blok, W. J. G. 2011, THINGS about MOND, A&A, 527, A76
  32. Griffiths, D. 2008, Introduction to Elementary Particles, 2nd edn. (Weinheim: Wiley-VCH)
  33. Hinterbichler, K. 2012, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys., 84, 671 https://doi.org/10.1103/RevModPhys.84.671
  34. Kroupa, P. 2012, The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology, PASA, 29, 395 https://doi.org/10.1071/AS12005
  35. Kroupa, P. 2015, Galaxies as Simple Dynamical Systems: Observational Data Disfavor Dark Matter and Stochastic Star Formation, Can. J. Phys., 93, 169 https://doi.org/10.1139/cjp-2014-0179
  36. Lee, J., Kim, S., & Rey, S.-C. 2015, A New Dynamical Mass Estimate for the Virgo Cluster Using the Radial Velocity Profile of the Filament Galaxies, arXiv:1501.07064
  37. McGaugh, S. S. 2004, The Mass Discrepancy–Acceleration Relation: Disk Mass and the Dark Matter Distribution, ApJ, 609, 652 https://doi.org/10.1086/421338
  38. McGaugh, S. S. 2005, The Baryonic Tully–Fisher Relation of Galaxies with Extended Rotation Curves and the Stellar Mass of Rotating Galaxies, ApJ, 632, 859 https://doi.org/10.1086/432968
  39. Ade, P. A. R., et al. 2014, Planck 2013 Results. XVI. Cosmological Parameters, A&A, 571, A16
  40. Avilez-Lopez, A., Padilla, A., Saffin, P. M., & Skordis, C. 2015, The Parameterized Post-Newtonian-Vainshteinian Formalism, arXiv:1501.01985
  41. Bahcall, N. A., Ostriker, J. P., Perlmutter, S., & Steinhardt, P. J. 1999, The Cosmic Triangle: Revealing the State of the Universe, Science, 284, 1481 https://doi.org/10.1126/science.284.5419.1481
  42. Babichev, E., & Deffay, C. 2013, An Introduction to the Vainshtein Mechanism, Class. Quantum Grav., 30, 184001 https://doi.org/10.1088/0264-9381/30/18/184001
  43. Baker, T., Psaltis, D., & Skordis, C. 2015, Linking Tests of Gravity on All Scales: From the Strong-Field Regime to Cosmology, ApJ, 802, 63 https://doi.org/10.1088/0004-637X/802/1/63
  44. Cardone, V. F., Angus, G., Diaferio, A., et al. 2011, The Modified Newtonian Dynamics Fundamental Plane, MNRAS, 412, 2617 https://doi.org/10.1111/j.1365-2966.2010.18081.x
  45. Cardone, V. F., Radicella, N., & Parisi, L. 2012, Constraining Massive Gravity with Recent Cosmological Data, Phys. Rev. D, 85, 124005 https://doi.org/10.1103/PhysRevD.85.124005
  46. Chae, K.-H., & Gong, I.-T. 2015, Testing Modified Newtonian Dynamics through Statistics of Velocity Dispersion Profiles in the Inner Regions of Elliptical Galaxies, arXiv:1505.02936
  47. Clifton, T., Ferreira, P. G., Padilla, A., & Skordis, C. 2012, Modified Gravity and Cosmology, Phys. Rep., 513, 1 https://doi.org/10.1016/j.physrep.2012.01.001