• Received : 2015.05.28
  • Accepted : 2015.06.15
  • Published : 2015.06.30


The masses of supermassive black holes in active galactic nuclei (AGN) can be derived spectroscopically via virial mass estimators based on selected broad optical/ultraviolet emission lines. These estimates commonly use the line width as a proxy for the gas speed and the monochromatic continuum luminosity, λLλ, as a proxy for the radius of the broad line region. However, if the size of the broad line region scales with the bolometric AGN luminosity rather than λLλ, mass estimates based on different emission lines will show a systematic discrepancy which is a function of the color of the AGN continuum. This has actually been observed in mass estimates based on Hα/Hβ and CIV lines, indicating that AGN broad line regions indeed scale with bolometric luminosity. Given that this effect seems to have been overlooked as yet, currently used single-epoch mass estimates are likely to be biased.


galaxies: active;quasars: emission lines;black hole physics


  1. Xu, Y., Bian, W.-H., Yuan, Q.-R., & Huang, K.-L. 2008, The Origin and Evolution of CIV Baldwin Effect in QSOs from the Sloan Digital Sky Survey, MNRAS, 389, 1703
  2. Vanden Berk, D. E., Richards, G. T., Bauer, A., et al. 2001, Composite Quasar Spectra from the Sloan Digital Sky Survey, AJ, 122, 549
  3. Vestergaard, M., & Peterson, B. M. 2006, Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relations, ApJ, 641, 689
  4. Walsh, J. L., Barth, A. J., Ho, J. C., & Sarzi, M. 2013, The M 87 Black Hole Mass from Gas-Dynamical Models of Space Telescope Imaging Spectrograph Observations, ApJ, 770, 86
  5. Netzer, H. 2013, The Physics and Evolution of Active Galactic Nuclei (Cambridge: Cambridge University Press)
  6. Kaspi, S., Brandt, W. N., Netzer, H., et al. 2007, Reverberation Mapping of High-Luminosity Quasars: First Results, ApJ, 659, 997
  7. Kim, D., Im, M., & Kim, M. 2010, New Estimators of Black Hole Mass in Active Galactic Nuclei with Hydrogen Paschen Lines, ApJ, 724, 386
  8. Kim, J.-Y., & Trippe, S. 2013, How to Monitor AGN Intra Day Variability at 230 GHz, JKAS, 46, 65
  9. Oh, S., Kim, S. S., & Figer, D. F. 2009, Mass Distribution in the Central Few Parsecs of Our Galaxy, JKAS, 42, 17
  10. Park, J.-H., & Trippe, S. 2012, Multiple Emission States in Active Galactic Nuclei, JKAS, 45, 147
  11. Park, J.-H., & Trippe, S. 2014, Radio Variability and Random Walk Noise Properties of Four Blazars, ApJ, 785, 76
  12. Park, D., Woo, J.-H., Denney, K. D., & Shin, J. 2013, Calibrating CIV-Based Black Hole Mass Estimators, ApJ, 770, 87
  13. Peterson, B. M. 1993, Reverberation Mapping of Active Galactic Nuclei, PASP, 105, 247
  14. Runnoe, J. C., Brotherton, M. S., Shang, Z., & DiPompeo, M. A. 2013, Rehabilitating CIV-Based Black Hole Mass Estimates in Quasars, MNRAS, 434, 848
  15. Schramm, K.-J., Borgeest, U., Camenzind, M., et al. 1993, Recent Activity in the Optical and Radio Lightcurves of the Blazar 3C 345: Indications for a ‘Lighthouse Effect’ due to Jet Rotation, A&A, 278, 391
  16. Trippe, S. 2014, Does the Jet Production Efficiency of Radio Galaxies Control Their Optical AGN Types?, JKAS, 47, 159
  17. Fabian, A. C. 2012, Observational Evidence of Active Galactic Nuclei Feedback, ARAA, 50, 455
  18. Baldwin, J., Ferland, G., Korista, K., & Verner, D. 1995, Locally Optimally Emitting Clouds and the Origin of Quasar Emission Lines, ApJ, 455, L119
  19. Bender, R., Kormendy, J., Bower, G., et al. 2005, HST STIS Spectroscopy of the Triple Nucleus of M 31: Two Nested Disks in Keplerian Rotation around a Supermassive Black Hole, ApJ, 631, 280
  20. Bentz, M. C., Peterson, B. M., Netzer, H., et al. 2009, The Radius–Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements. II. The Full Sample of Reverberation-Mapped AGNs, ApJ, 697, 160
  21. Ferrarese, L., & Ford, H. 2005, Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research, Space Sci. Rev., 116, 523
  22. Fletcher, A. B. 2003, Massive Black Hole Evolution in Radio-Loud Active Galactic Nuclei, JKAS, 36, 177
  23. Greene, J. E., & Ho, L. C. 2005, Estimating Black Hole Masses in Active Galaxies Using the Hα Emission Line, ApJ, 630, 122
  24. Herrnstein, J. R., Moran, J. M., Greenhill, L. J., & Trotter, A. S. 2005, The Geometry of and Mass Accretion Rate Through the Maser Accretion Disk in NGC 4258, ApJ, 629, 719
  25. Ho, L. C., Goldini, P., Dong, X.-B., et al. 2012, Simultaneous Ultraviolet and Optical Emission-Line Profiles of Quasars: Implications for Black Hole Mass Determination, ApJ, 754, 11
  26. Jun, H. D., Im, M., Lee, H. M., et al. 2015, Rest-Frame Optical Spectra and Black Hole Masses of 3 < z < 6 Quasars, arXiv:1504.00058
  27. Assef, R. J., Denney, K. D., Kochanek, C. S., et al. 2011, Black Hole Mass Estimates Based on C IV Are Consistent with Those Based on the Balmer Lines, ApJ, 742, 93
  28. Baldwin, J. A. 1977, Luminosity Indicators in the Spectra of Quasi-Stellar Objects, ApJ, 214, 679

Cited by

  2. On estimators of the jet bolometric luminosity of Fermi 2LAC blazars vol.362, pp.10, 2017,
  3. Quasars as standard candles vol.602, 2017,
  4. The Physical Relation between Disc and Coronal Emission in Quasars vol.4, pp.2296-987X, 2018,
  5. Interpretation of Departure from the Broad-line Region Scaling in Active Galactic Nuclei vol.870, pp.2, 2019,


Grant : 프런티어물리인력양성사업단