Characterization of Bacillus mojavensis KJS-3 for the Promotion of Plant Growth

식물 성장 촉진에 사용에 있어 Bacillus mojavensis KJS-3의 특징

Kim, Kang Min;Liu, Jie;Go, Youn Suk;Kang, Jae Seon

  • Received : 2015.06.02
  • Accepted : 2015.07.08
  • Published : 2015.08.30


Scientists have recently shown an interest in the characteristics of Bacillus mojavensis strains because of their increasing use in plants as a defense against diseases and mycotoxins. We have shown here that B. mojavensis KJS-3 possesses the typical characteristics of B. mojavensis strains including a strong resistance to high temperatures (≤50℃), tolerance to high salt concentrations (7% NaCl), ethanol tolerance (40% ethanol), and pH range for growth (pH 5-9). B. mojavensis KJS-3 has been used for the production of cyclic lipopeptides including important antifungal substances such as surfactin, iturin, and fengycin. Polymerase chain reaction analysis in this study showed that B. mojavensis KJS-3 can be used for the production of fengycin and the findings of LC-MS/MS analyses suggest that B. mojavensis KJS-3 can be used to produce iturin and surfactin. Antifungal activity analys is confirmed that B. mojavensis KJS-3 has antifungal effects on Botrytis cinerea, Rhizoctonia solani AG-4, Sclerotinia sclerotiorum, and Colletotricum goeosporioides. A microscopy assessment of the roots of wild ginseng plants planted together with B. mojavensis KJS-3 revealed that the roots contained B. mojavensis KJS-3, confirming the bacteria to be a plant growth promoting endophyte (PGPE) which acts against plant diseases and mycotoxins. Our findings lead us to conclude that B. mojavensis KJS-3 can be produced at an industrial level as a microbial pesticide or microbial fertilizer.


Antifungal activity;Bacillus mojavensis KJS-3;plant pathogenic fungi;plant growth promoting endophyte


  1. Ramarathnam, R., Bo, S., Chen, Y., Fernando, W. G., Xuewen, G. and de Kievit, T. 2007. Molecular and biochemical detection of fengycin and bacillomycin D-producing Bacillus SPP., antagonistic to fungal pathogens of canola and wheat. Can. J. Microbiol. 53, 901-911.
  2. Roberts, M. S., Nakumora, L. K. and Cohan, F. M. 1994. Bacillus mojavensis sp.Nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. Int. J. Syst. Bacteriol. 44, 256-264.
  3. Ryu, H., Park, H., Suh, D. S., Jung, G. H. and Park, K. 2014. Biological control of Colletotrichum panacicola on Panax ginseng by Bacillus subtilis HK-CSM-1. J. Ginseng Res. 38, 215-219.
  4. Vanittanakom, N., Loeffler, W., Koch, U. and Jung, G. 1986. Fengycin--a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot. 39, 888-901.
  5. Vater, J., Kablitz, B., Wilde, C., Franke, P., Mehta, N. and Cameotra, S. S. 2002. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactant in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl. Environ. Microb. 68, 6210-6219.
  6. Hallmann, J., Qualt-Hallmann, A., Mahaffee, W. F. and Kloepper, J. W. 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43, 895-914.
  7. Jang, Y., Kim, S. G. and Kim, Y. H. 2011. Biocontrol efficacies of Bacillus species against cylindrocarpon destructans causing ginseng root rot. Plant Pathol. J. 27, 333-341.
  8. Kassas, M. 1977. Arid and semi-arid lands: problems and prospects. Agro-ecosyst. 3, 185-204.
  9. Khan, M. A., Gul, B. and Weber, D. J. 2002. Improving seed germination of Salicorniarubra (Chenopodiaceae) under saline conditions using germination regulating chemicals. West. N. Am. Naturalist 62, 101-105.
  10. Kim, K. M., Jung, T. S., Ok, S., Ko, C. Y. and Kang, J. S. 2011. In vitro Characterization study of Bacillus mojavensis KJS-3 for a potential probiotic. Food Sci. Biotechnol. 20, 1155-1159.
  11. Kim, K. M., Jung, T. S., Ok, S., Ko, C. Y. and Kang, J. S. 2012. Evaluation of genotoxicity of Bacillus mojavensis KJS-3 on culture supernatant for use as a probiotic. Mol. Cell. Toxicol. 8, 77-81.
  12. Li, Y., Han, L., Zhang, Y., Fu, X., Chen, X., Zhang, L., Mei, R. and Wang, Q. 2013. Biological control of apple ring rot on fruit by Bacillus amyloliquefaciens 9001. Plant Pathol. J. 29, 168-173.
  13. Mukherjee, A. K. and Das, K. 2005. Correlation between diverse cyclic lipopeptides production and regulation of growth and substrate utilization by Bacillus subtilis strains in aparticular habitat. FEMS Microbiol. Ecol. 54, 479-489.
  14. Pyo, J. S., Shrestha, S. (Amatya), Park, S. H. and Kang, J. S. 2014. Biological control of plant growth using the plant growth-promoting rhizobacterium Bacillus mojavensis KJS-3. J. Life Sci. 24, 1308-1315.
  15. Bacon, C. W. and Hinton, D. M. 2002. Endophytic and biological control potential of Bacillus mojavensis and related species. Biol. Control 23, 274-284.
  16. Bacon, C. W. and Hinton, D. M. 2007. Potential for control of seedling blight of wheat caused by Fusarium graminearum and related species using the bacterial endophyte Bacillus mojavensis. Biocontrol. Sci. Technol. 17, 81-94.
  17. Bloemberg, G. V. and Lugtenberg, B. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4, 343-350.
  18. Cakmakci, R., Dönmez, F. Aydın, A. and Sahin, F. 2006. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhause and two different field soil conditions. Soil. Biol. Biochem. 38, 1482-1487.
  19. Choi, S. M., Park, M. H., Jung, T. S., Moon, K. H., Kim, K. M. and Kang, J. S. 2011. Characterization of Bacillus mojavensis KJS-3 for industrial applications. Arch. Pharm. Res. 34, 289-298.
  20. Fernandes, P. A. V., Arruda, I. R. D., Santo, A. F. A. B. D., Araújo, A. A. D., Maior, A. M. S. and Ximenes, E. A. 2007. Antimicrobial activity of surfactants produced by Bacillus subtilis R14 against multidrug-resistant bacteria. Braz. J. Microbiol. 38, 704-709.
  21. Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41, 109-117.

Cited by

  1. Foliar Application of Vegetal-Derived Bioactive Compounds Stimulates the Growth of Beneficial Bacteria and Enhances Microbiome Biodiversity in Lettuce vol.10, pp.1664-462X, 2019,