DOI QR코드

DOI QR Code

RULED SURFACES AND GAUSS MAP

  • KIM, DONG-SOO (DEPARTMENT OF MATHEMATICS CHONNAM NATIONAL UNIVERSITY)
  • Received : 2014.11.04
  • Published : 2015.09.30

Abstract

We study the Gauss map G of ruled surfaces in the 3-dimensional Euclidean space $\mathbb{E}^3$ with respect to the so called Cheng-Yau operator ${\Box}$ acting on the functions defined on the surfaces. As a result, we establish the classification theorem that the only ruled surfaces with Gauss map G satisfying ${\Box}G=AG$ for some $3{\times}3$ matrix A are the flat ones. Furthermore, we show that the only ruled surfaces with Gauss map G satisfying ${\Box}G=AG$ for some nonzero $3{\times}3$ matrix A are the cylindrical surfaces.

Acknowledgement

Supported by : Chonnam National University

References

  1. L. J. Alias and N. Gurbuz, An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Dedicata 121 (2006), 113-127.
  2. C. Baikoussis, Ruled submanifolds with finite type Gauss map, J. Geom. 49 (1994), no. 1-2, 42-45. https://doi.org/10.1007/BF01228047
  3. C. Baikoussis and D. E. Blair, On the Gauss map of ruled surfaces, Glasgow Math. J. 34 (1992), no. 3, 355-359. https://doi.org/10.1017/S0017089500008946
  4. C. Baikoussis and L. Verstraelen, On the Gauss map of helicoidal surfaces, Rend. Sem. Mat. Messina Ser. II 2(16) (1993), 31-42.
  5. B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific Publ., New Jersey, 1984.
  6. B.-Y. Chen, Finite Type Submanifolds and Generalizations, University of Rome, 1985.
  7. B.-Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 35 (1987), no. 2, 161-186. https://doi.org/10.1017/S0004972700013162
  8. S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), no. 3, 195-204. https://doi.org/10.1007/BF01425237
  9. M. Choi, D.-S. Kim, Y. H. Kim, and D. W. Yoon, Circular cone and its Gauss map, Colloq. Math. 129 (2012), no. 2, 203-210. https://doi.org/10.4064/cm129-2-4
  10. S. M. Choi, On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space, Tsukuba J. Math. 19 (1995), no. 2, 351-367. https://doi.org/10.21099/tkbjm/1496162874
  11. S. M. Choi, On the Gauss map of ruled surfaces in a 3-dimensional Minkowski space, Tsukuba J. Math. 19 (1995), no. 2, 285-304. https://doi.org/10.21099/tkbjm/1496162870
  12. F. Dillen, J. Pas, and L. Verstraelen, On the Gauss map of surfaces of revolution, Bull. Inst. Math. Acad. Sinica 18 (1990), no. 3, 239-246.
  13. M. P. do Carmo, Differential Geometry of Curves and Surfaces, Translated from the Portuguese, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976.
  14. U. Dursun, Hypersurfaces with pointwise 1-type Gauss map, Taiwanese J. Math. 11 (2007), no. 5, 1407-1416. https://doi.org/10.11650/twjm/1500404873
  15. U. Dursun, Flat surfaces in the Euclidean space E3 with pointwise 1-type Gauss map, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 3, 469-478.
  16. U.-H. Ki, D.-S. Kim, Y. H. Kim, and Y.-M. Roh, Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math. 13 (2009), no. 1, 317-338. https://doi.org/10.11650/twjm/1500405286
  17. D.-S. Kim, On the Gauss map of quadric hypersurfaces, J. Korean Math. Soc. 31 (1994), no. 3, 429-437.
  18. D.-S. Kim, On the Gauss map of hypersurfaces in the space form, J. Korean Math. Soc. 32 (1995), no. 3, 509-518.
  19. D.-S. Kim, J. R. Kim, and Y. H. Kim, Cheng-Yau operator and Gauss map of surfaces of revolution, Bull. Malays. Math. Sci. Soc., To appear. arXiv:1411.2291
  20. D.-S. Kim and Y. H. Kim, Surfaces with planar lines of curvature, Honam Math. J. 32 (2010), no. 4, 777-790. https://doi.org/10.5831/HMJ.2010.32.4.777
  21. D.-S. Kim, Y. H. Kim, and D. W. Yoon, Extended B-scrolls and their Gauss maps, Indian J. Pure Appl. Math. 33 (2002), no. 7, 1031-1040.
  22. D.-S. Kim and B. Song, On the Gauss map of generalized slant cylindrical surfaces, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 20 (2013), no. 3, 149-158.
  23. Y. H. Kim and N. C. Turgay, Surfaces in $E^3$ with $L_1$-pointwise 1-type Gauss map, Bull. Korean Math. Soc. 50 (2013), no. 3, 935-949. https://doi.org/10.4134/BKMS.2013.50.3.935
  24. Y. H. Kim and N. C. Turgay, Classifications of helicoidal surfaces with $L_1$-pointwise 1-type Gauss map, Bull. Korean Math. Soc. 50 (2013), no. 4, 1345-1356. https://doi.org/10.4134/BKMS.2013.50.4.1345
  25. Y. H. Kim and D. W. Yoon, On the Gauss map of ruled surfaces in Minkowski space, Rocky Mountain J. Math. 35 (2005), no. 5, 1555-1581. https://doi.org/10.1216/rmjm/1181069651
  26. E. A. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970), 569-573. https://doi.org/10.1090/S0002-9947-1970-0259768-5