대한수학회보 (Bulletin of the Korean Mathematical Society)
- Volume 52 Issue 5
- /
- Pages.1669-1681
- /
- 2015
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
DOI QR Code
SEMI-CONVERGENCE OF THE PARAMETERIZED INEXACT UZAWA METHOD FOR SINGULAR SADDLE POINT PROBLEMS
- YUN, JAE HEON (DEPARTMENT OF MATHEMATICS COLLEGE OF NATURAL SCIENCES CHUNGBUK NATIONAL UNIVERSITY)
- 투고 : 2014.11.11
- 발행 : 2015.09.30
초록
In this paper, we provide semi-convergence results of the parameterized inexact Uzawa method with singular preconditioners for solving singular saddle point problems. We also provide numerical experiments to examine the effectiveness of the parameterized inexact Uzawa method with singular preconditioners.
파일
과제정보
연구 과제 주관 기관 : National Research Foundation of Korea (NRF)
참고문헌
- M. Arioli, I. S. Duff, and P. P. M. de Rijk, On the augmented system approach to sparse least squares problems, Numer. Math. 55 (1989), no. 6, 667-684. https://doi.org/10.1007/BF01389335
- Z. Z. Bai, B. N. Parlett, and Z. Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math. 102 (2005), no. 1, 1-38. https://doi.org/10.1007/s00211-005-0643-0
- Z. Z. Bai and Z. Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl. 428 (2008), no. 11-12, 2900-2932. https://doi.org/10.1016/j.laa.2008.01.018
- A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
- Z. H. Cao, On the convergence of general stationary linear iterative methods for singular linear systems, SIAM J. Matrix Anal. Appl. 29 (2007), 1382-1388.
- Z. Chao and G. Chen, Semi-convergence analysis of the Uzawa-SOR methods for sin-gular saddle point problems, Appl. Math. Lett. 35 (2014), 52-57. https://doi.org/10.1016/j.aml.2014.04.014
- Z. Chao, N. Zhang, and Y. Lu, Optimal parameters of the generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math. 266 (2014), 52-60. https://doi.org/10.1016/j.cam.2014.01.023
- M. T. Darvishi and P. Hessari, Symmetric SOR method for augmented systems, Appl. Math. Comput. 183 (2006), no. 1, 409-415. https://doi.org/10.1016/j.amc.2006.05.094
- H. C. Elman, Preconditioning for the steady-state Navier-Stokes equations with low viscosity, SIAM J. Sci. Comput. 20 (1999), no. 4, 1299-1316. https://doi.org/10.1137/S1064827596312547
- H. C. Elman and D. J. Silvester, Fast nonsymmetric iteration and preconditioning for Navier-Stokes equations, SIAM J. Sci. Comput. 17 (1996), no. 1, 33-46. https://doi.org/10.1137/0917004
- G. H. Golub, X. Wu, and J. Y. Yuan, SOR-like methods for augmented systems, BIT 41 (2001), no. 1, 71-85. https://doi.org/10.1023/A:1021965717530
- F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incom-pressible flow of fluid with free surface, Phys. Fluids 8 (1965), 2182-2189. https://doi.org/10.1063/1.1761178
- J. I. Li and T. Z. Huang, The semi-convergence of generalized SSOR method for singular augmented systems, High Performance Computing and Applications, Lecture Notes in Computer Science 5938 (2010), 230-235.
- S. Wright, Stability of augmented system factorization in interior point methods, SIAM J. Matrix Anal. Appl. 18 (1997), no. 1, 191-222. https://doi.org/10.1137/S0895479894271093
- J. Y. Yuan and A. N. Iusem, Preconditioned conjugate gradient methods for generalized least squares problem, J. Comput. Appl. Math. 71 (1996), no. 2, 287-297. https://doi.org/10.1016/0377-0427(95)00239-1
- J. H. Yun, Variants of the Uzawa method for saddle point problem, Comput. Math. Appl. 65 (2013), no. 7, 1037-1046. https://doi.org/10.1016/j.camwa.2013.01.037
- J. H. Yun, Convergence of relaxation iterative methods for saddle point problem, Appl. Math. Comput. 251 (2015), 65-80. https://doi.org/10.1016/j.amc.2014.11.047
- G. F. Zhang and Q. H. Lu, On generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math. 219 (2008), no. 1, 51-58. https://doi.org/10.1016/j.cam.2007.07.001
- G. F. Zhang and S. S. Wang, A generalization of parameterized inexact Uzawa method for singular saddle point problems, Appl. Math. Comput. 219 (2013), no. 9, 4225-4231. https://doi.org/10.1016/j.amc.2012.10.116
- N. Zhang and Y. Wei, On the convergence of general stationary iterative methods for range-Hermitian singular linear systems, Numer. Linear Algebra Appl. 17 (2010), no. 1, 139-154. https://doi.org/10.1002/nla.663
- B. Zheng, Z. Z. Bai, and X. Yang, On semi-convergence of parameterized Uzawa methods for singular saddle point problems, Linear Algebra Appl. 431 (2009), no. 5-7, 808-817. https://doi.org/10.1016/j.laa.2009.03.033
- L. Zhou and N. Zhang, Semi-convergence analysis of GMSSOR methods for singular saddle point problems, Comput. Math. Appl. 68 (2014), no. 5, 596-605. https://doi.org/10.1016/j.camwa.2014.07.003